IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921007153.html
   My bibliography  Save this article

Control the collective behaviors in a functional neural network

Author

Listed:
  • Yao, Zhao
  • Wang, Chunni

Abstract

Specific biophysical neurons are presented to detect different stimuli, and these external exciting signals are encoded to trigger appropriate firing modes and action potentials for signal propagation between neurons in the network. A thermosensitive neuron can estimate the effect of temperature changes on the excitability and firing modes in nervous system, a photocurrent-dependent neuron can be sensitive to the changes of external illumination or light, and an auditory neuron can perceive acoustic wave when the vibration energy is absorbed and converted into field energy in the loop of neural circuits. From biophysical viewpoint, some specific electric components such as thermistor, phototube, and piezoelectric ceramics can be incorporated into neural circuits for activating specific functions, and thus the external stimuli such as heat, light and vibration can be detected because these energy injections can be converted to intrinsic field energy in the neural circuits. In this paper, three kinds of different neural circuits are coupled in a close loop, energy pumping and the stability of phase synchronization are investigated by regulating the properties of coupling channels, furthermore, the noise effect is also estimated. When induction coil is used to couple the neural circuits, phase stability is controlled under magnetic field coupling, and the activation of noise can change the stability of phase synchronization. The intrinsic field energy in the light-dependent neuron is increased with the increase of coupling intensity when voltage coupling via resistor and magnetic field coupling via induction coil are switched on. In case of electric field coupling via capacitor, the energy in the light-dependent neural circuit keeps oscillatory with small amplitude. These results indicate that magnetic field can be the most suitable way for realizing synchronous information encoding between different functional neurons than the electric synapse coupling because continuous pumping of ions can induce magnetic field in the cell, and all the neurons are controlled completely by effective pumping in field energy.

Suggested Citation

  • Yao, Zhao & Wang, Chunni, 2021. "Control the collective behaviors in a functional neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007153
    DOI: 10.1016/j.chaos.2021.111361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    2. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    3. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Yao, Zhao & Zhou, Ping & Alsaedi, Ahmed & Ma, Jun, 2020. "Energy flow-guided synchronization between chaotic circuits," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    5. Xu, Ying & Guo, Yeye & Ren, Guodong & Ma, Jun, 2020. "Dynamics and stochastic resonance in a thermosensitive neuron," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    6. Olga Dyakova & Yu-Jen Lee & Kit D. Longden & Valerij G. Kiselev & Karin Nordström, 2015. "A higher order visual neuron tuned to the spatial amplitude spectra of natural scenes," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Wu, Fuqiang & Kang, Ting & Shao, Yan & Wang, Qingyun, 2023. "Stability of Hopfield neural network with resistive and magnetic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Wu, Fuqiang & Guo, Yitong & Ma, Jun & Jin, Wuyin, 2023. "Synchronization of bursting memristive Josephson junctions via resistive and magnetic coupling," Applied Mathematics and Computation, Elsevier, vol. 455(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Jules Tagne Fossi & Vandi Deli & Hélène Carole Edima & Zeric Tabekoueng Njitacke & Florent Feudjio Kemwoue & Jacques Atangana, 2022. "Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-17, April.
    5. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    7. Sun, Guoping & Yang, Feifei & Ren, Guodong & Wang, Chunni, 2023. "Energy encoding in a biophysical neuron and adaptive energy balance under field coupling," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Fossi, Jules Tagne & Njitacke, Zeric Tabekoueng & Tankeu, William Nguimeya & Mendimi, Joseph Marie & Awrejcewicz, Jan & Atangana, Jacques, 2023. "Phase synchronization and coexisting attractors in a model of three different neurons coupled via hybrid synapses," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Rajgopal, Karthikeyan & Karthikeyan, Anitha & V.R., Varun Raj, 2022. "Dynamical behavior of pancreatic β cells with memductance flux coupling: Considering nodal properties and wave propagation in the excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    10. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    11. Yang, Feifei & Ma, Jun & An, Xinlei, 2022. "Mode selection and stability of attractors in Chua circuit driven by piezoelectric sources," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    13. Yao, Zhao & Wang, Chunni, 2022. "Collective behaviors in a multiple functional network with hybrid synapses," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    14. Gao, Chenghua & Qiao, Shuai & An, Xinlei, 2022. "Global multistability and mechanisms of a memristive autapse-based Filippov Hindmash-Rose neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Mondal, Arnab & Upadhyay, Ranjit Kumar & Mondal, Argha & Sharma, Sanjeev Kumar, 2022. "Emergence of Turing patterns and dynamic visualization in excitable neuron model," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    16. Guo, Yitong & Xie, Ying & Ma, Jun, 2023. "Nonlinear responses in a neural network under spatial electromagnetic radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    17. Peng, Lu & Tang, Jun & Ma, Jun & Luo, Jinming, 2022. "The influence of autapse on synchronous firing in small-world neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    18. Xing, Miaomiao & Song, Xinlin & Wang, Hengtong & Yang, Zhuoqin & Chen, Yong, 2022. "Frequency synchronization and excitabilities of two coupled heterogeneous Morris-Lecar neurons," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Guo, Shengli & Xu, Ying & Wang, Chunni & Jin, Wuyin & Hobiny, Aatef & Ma, Jun, 2017. "Collective response, synapse coupling and field coupling in neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 120-127.
    20. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.