IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v588y2022ics0378437121008311.html
   My bibliography  Save this article

The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks

Author

Listed:
  • Ma, Weicai
  • Zhang, Peng
  • Zhao, Xin
  • Xue, Leyang

Abstract

The outbreak of coronavirus disease 2019 (COVID-19) threatens the health and safety of all humanity. This disease has a prominent feature: the presymptomatic and asymptomatic viral carriers can spread the disease. It is crucial to estimate the impact of this undetected transmission on epidemic outbreaks. Currently, disease-related information has been widely disseminated by the mass media. To investigate the impact of both individuals and mass media information dissemination on the epidemic spreading, we establish a new UAU-SEIR (Unaware–Aware–Unaware–Susceptible–Exposed–Infected–Recovered) model with mass media on two-layer multiplex networks. In the model, E-state individuals denote asymptomatic infections, and a single node connecting to all individuals denotes the mass media. In this work, we use the Microscopic Markovian Chain Approach (MMCA) to derive the epidemic threshold. Comparing the MMCA theoretical results with Monte Carlo (MC) simulations, we find that the MMCA has a good consistency with MC simulations. In addition, we also analyze the impact of model parameters on epidemic spreading and epidemic threshold. The results show that reducing the proportion of asymptomatic infections, accelerating the dissemination of information between individuals and the dissemination of information via the mass media can effectively inhibit the epidemic spreading and raise the epidemic threshold.

Suggested Citation

  • Ma, Weicai & Zhang, Peng & Zhao, Xin & Xue, Leyang, 2022. "The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
  • Handle: RePEc:eee:phsmap:v:588:y:2022:i:c:s0378437121008311
    DOI: 10.1016/j.physa.2021.126558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121008311
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    2. Chao Zuo & Anjing Wang & Fenping Zhu & Zeyang Meng & Xueke Zhao & xiaoke xu, 2021. "A New Coupled Awareness-Epidemic Spreading Model with Neighbor Behavior on Multiplex Networks," Complexity, Hindawi, vol. 2021, pages 1-14, March.
    3. Annas, Suwardi & Isbar Pratama, Muh. & Rifandi, Muh. & Sanusi, Wahidah & Side, Syafruddin, 2020. "Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Neil Ferguson, 2007. "Capturing human behaviour," Nature, Nature, vol. 446(7137), pages 733-733, April.
    5. Shi, Tianyu & Long, Ting & Pan, Yaohui & Zhang, Wensi & Dong, Chao & Yin, Qiuju, 2019. "Effects of asymptomatic infection on the dynamical interplay between behavior and disease transmission in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    6. Wang, Huan & Ma, Chuang & Chen, Han-Shuang & Zhang, Hai-Feng, 2021. "Effects of asymptomatic infection and self-initiated awareness on the coupled disease-awareness dynamics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    7. Dong Wang & Yi Zhao & Hui Leng, 2020. "Dynamics of Epidemic Spreading in the Group-Based Multilayer Networks," Mathematics, MDPI, vol. 8(11), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Liang’an & Gu, Jiafeng, 2023. "The influence of individual emotions on the coupled model of unconfirmed information propagation and epidemic spreading in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Li, Dandan & Xie, Weijie & Han, Dun, 2024. "Multi-information and epidemic coupling propagation considering indirect contact on two-layer networks," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    3. Ping Yu & Zhiping Wang & Yanan Sun & Peiwen Wang, 2022. "Risk Diffusion and Control under Uncertain Information Based on Hypernetwork," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    4. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    5. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    6. Yao, Qianyi & Fan, Ruguo & Chen, Rongkai & Qian, Rourou, 2023. "A model of the enterprise supply chain risk propagation based on partially mapping two-layer complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Wang & Zhiping Wang & Ping Yu & Peiwen Wang, 2022. "The SEIR Dynamic Evolutionary Model with Markov Chains in Hyper Networks," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    2. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    3. Juang, Jonq & Liang, Yu-Hao, 2024. "Epidemic models in well-mixed multiplex networks with distributed time delay," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    4. Huang, Jiechen & Wang, Juan & Xia, Chengyi, 2020. "Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Wu, Bingjie & Huo, Liang'an, 2024. "The influence of different government policies on the co-evolution of information dissemination, vaccination behavior and disease transmission in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    6. Huayan Pei & Ying Ding & Guanghui Yan, 2024. "Impact of information adoption and the resulted self-protective actions on epidemic spreading in awareness-disease coupled multiplex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(5), pages 1-10, May.
    7. Huo, Liang’an & Gu, Jiafeng, 2023. "The influence of individual emotions on the coupled model of unconfirmed information propagation and epidemic spreading in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    8. Wang, Runzhou & Zhang, Xinsheng & Wang, Minghu, 2024. "A two-layer model with partial mapping: Unveiling the interplay between information dissemination and disease diffusion," Applied Mathematics and Computation, Elsevier, vol. 468(C).
    9. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Li, Dandan & Xie, Weijie & Han, Dun, 2024. "Multi-information and epidemic coupling propagation considering indirect contact on two-layer networks," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    11. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2021. "Interplay between epidemic and information spreading on multiplex networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 268-279.
    12. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    13. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    14. An, Xuming & Ding, Li & Hu, Ping, 2020. "Information propagation with individual attention-decay effect on activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    15. Wu, Jiang & Zuo, Renxian & He, Chaocheng & Xiong, Hang & Zhao, Kang & Hu, Zhongyi, 2022. "The effect of information literacy heterogeneity on epidemic spreading in information and epidemic coupled multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    16. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    17. Xin, Li & Xi, Chen & Sagir, Mujgan & Wenbo, Zhang, 2023. "How can infectious medical waste be forecasted and transported during the COVID-19 pandemic? A hybrid two-stage method," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    18. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The effect of individual attitude on cooperation in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    19. Marinca, Bogdan & Marinca, Vasile & Bogdan, Ciprian, 2021. "Dynamics of SEIR epidemic model by optimal auxiliary functions method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    20. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:588:y:2022:i:c:s0378437121008311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.