IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v649y2024ics0378437124004825.html
   My bibliography  Save this article

The dynamical analysis of simplicial SAIS epidemic model with awareness programs by media

Author

Listed:
  • Liu, Maoxing
  • Ren, Xuejie
  • Peng, Yu
  • Sun, Yongzheng

Abstract

In this paper, we propose an SAIS epidemic model with awareness programs by media on higher-order networks to study the impact of media and higher-order networks on disease transmission, in which the simplicial complex is utilized to construct a social network that describes connections between nodes, where a single link can connect more than two individuals. We use the cumulative density of awareness programs to quantify the impact of media and use the Microscopic Markov Chains method to get the probability evolution equation of each node. In order to solve the computational difficulties caused by the excessively high dimension of the equation, we use the mean field method to reduce the dimension of the equation to get the equilibrium of the system. Through dynamical analysis, we obtain the threshold of disease outbreak and conditions for the existence and stability of the disease-free equilibrium and the endemic equilibrium. The numerical simulations of SAIS model prove that the mean field method has good predictive performance. We also obtain the influence of parameters on threshold and system dynamical behavior through sensitivity analysis. The results show that: on one hand, the introduce of 2-simplex increases the probability of disease transmission in healthy populations, and the system appears discontinuous transition and bistable coexistence of health state and disease epidemic state, on the other hand, awareness programs by media can increase the threshold of disease outbreak, decrease the final density of infected individuals and inhibit the explosive growth of disease, thus effectively control the spread of diseases.

Suggested Citation

  • Liu, Maoxing & Ren, Xuejie & Peng, Yu & Sun, Yongzheng, 2024. "The dynamical analysis of simplicial SAIS epidemic model with awareness programs by media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
  • Handle: RePEc:eee:phsmap:v:649:y:2024:i:c:s0378437124004825
    DOI: 10.1016/j.physa.2024.129973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124004825
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    3. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    4. Ma, Weicai & Zhang, Peng & Zhao, Xin & Xue, Leyang, 2022. "The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    5. Yuan, Xinpeng & Xue, Yakui & Liu, Maoxing, 2013. "Analysis of an epidemic model with awareness programs by media on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 48(C), pages 1-11.
    6. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    4. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    5. Hu, Xin & Wang, Zhishuang & Sun, Qingyi & Chen, Jiaxing & Zhao, Dawei & Xia, Chengyi, 2024. "Coupled propagation between one communicable disease and related two types of information on multiplex networks with simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    6. Chang, Xin & Cai, Chao-Ran & Zhang, Ji-Qiang & Yang, Wen-Li, 2024. "The universality of physical images at relative timescales on multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Ma, Jinlong & Wang, Peng, 2024. "Impact of community networks with higher-order interaction on epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Li, Tianyu & Wu, Yong & Ding, Qianming & Xie, Ying & Yu, Dong & Yang, Lijian & Jia, Ya, 2024. "Social contagion in high-order network with mutation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    9. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    10. Tan, Jipeng & Zhang, Man & Liu, Fengming, 2024. "Online-Offline Higher-Order Rumor Propagation Model Based on Quantum Cellular Automata Considering Social Adaptation," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    11. Li, Shumei & Yang, Chun & Yao, Zhiwen, 2024. "Simplicial epidemic model with individual resource," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    12. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Higher-order percolation in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Lv, Xijian & Fan, Dongmei & Yang, Junxian & Li, Qiang & Zhou, Li, 2024. "Delay differential equation modeling of social contagion with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    14. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    15. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    16. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    17. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    18. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    19. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    20. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:649:y:2024:i:c:s0378437124004825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.