IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v588y2022ics0378437121008001.html
   My bibliography  Save this article

A three-state opinion formation model for financial markets

Author

Listed:
  • Zubillaga, Bernardo J.
  • Vilela, André L.M.
  • Wang, Chao
  • Nelson, Kenric P.
  • Stanley, H. Eugene

Abstract

We propose a three-state microscopic opinion formation model for the purpose of simulating the dynamics of financial markets. In order to mimic the heterogeneous composition of the mass of investors in a market, the agent-based model considers two different types of traders: noise traders and noise contrarians. Agents are represented as nodes in a network of interactions and they can assume any of three distinct possible states. The time evolution of the state of an agent is dictated by probabilistic dynamics that include both local and global influences. A noise trader is subject to local interactions, tending to assume the majority state of its nearest neighbors, whilst a noise contrarian is subject to a global interaction with the behavior of the market as a whole, tending to assume the state of the global minority of the market. The model exhibits the typical qualitative and quantitative features of real financial time series, including distributions of returns with heavy tails, volatility clustering and long-time memory for the absolute values of the returns. The distributions of returns are fitted by means of coupled Gaussian distributions, quantitatively revealing transitions between leptokurtic, mesokurtic and platykurtic regimes in terms of a non-linear statistical coupling which describes the complexity of the system.

Suggested Citation

  • Zubillaga, Bernardo J. & Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2022. "A three-state opinion formation model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
  • Handle: RePEc:eee:phsmap:v:588:y:2022:i:c:s0378437121008001
    DOI: 10.1016/j.physa.2021.126527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121008001
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. E. Biondo & A. Pluchino & A. Rapisarda, 2015. "Modelling Financial Markets by Self-Organized Criticality," Papers 1507.04298, arXiv.org, revised Oct 2015.
    2. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    3. Kaufman, Miron & Diep, Hung T. & Kaufman, Sanda, 2019. "Sociophysics of intractable conflicts: Three-group dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 175-187.
    4. Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2019. "Majority-vote model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 762-770.
    5. Tetsuya Takaishi, 2005. "Simulations Of Financial Markets In A Potts-Like Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1311-1317.
    6. K. Sznajd-Weron & R. Weron, 2002. "A Simple Model Of Price Formation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 115-123.
    7. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    8. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    9. Diep, H.T. & Kaufman, Miron & Kaufman, Sanda, 2017. "Dynamics of two-group conflicts: A statistical physics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 183-199.
    10. Kaizoji, Taisei & Bornholdt, Stefan & Fujiwara, Yoshi, 2002. "Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 441-452.
    11. Nelson, Kenric P. & Umarov, Sabir R. & Kon, Mark A., 2017. "On the average uncertainty for systems with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 30-43.
    12. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    13. Nelson, Kenric P. & Kon, Mark A. & Umarov, Sabir R., 2019. "Use of the geometric mean as a statistic for the scale of the coupled Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 248-257.
    14. Umarov, Khojamahmad, 2019. "Сектор Животноводства В Таджикистане: Проблемы Устойчивого И Сбалансированного Развития [Livestock sector in Tajikistan: Problems of sustainable and balanced development]," IAMO Discussion Papers 190, Leibniz Institute of Agricultural Development in Transition Economies (IAMO).
    15. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    16. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    17. Constantino Tsallis & Celia Anteneodo & Lisa Borland & Roberto Osorio, 2003. "Nonextensive statistical mechanics and economics," Papers cond-mat/0301307, arXiv.org.
    18. Tetsuya Takaishi, 2005. "Simulations of financial markets in a Potts-like model," Papers cond-mat/0503156, arXiv.org.
    19. Stefan Bornholdt, 2001. "Expectation Bubbles In A Spin Model Of Markets: Intermittency From Frustration Across Scales," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(05), pages 667-674.
    20. Tsallis, Constantino & Anteneodo, Celia & Borland, Lisa & Osorio, Roberto, 2003. "Nonextensive statistical mechanics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nelson, Kenric P., 2022. "Independent Approximates enable closed-form estimation of heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    2. Stefan, F.M. & Atman, A.P.F., 2023. "Asymmetric rate of returns and wealth distribution influenced by the introduction of technical analysis into a behavioral agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Oliveira, Igor V.G. & Wang, Chao & Dong, Gaogao & Du, Ruijin & Fiore, Carlos E. & Vilela, André L.M. & Stanley, H. Eugene, 2024. "Entropy production on cooperative opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    2. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    3. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    4. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    5. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    6. Tetsuya Takaishi, 2008. "Financial Time Series Analysis of SV Model by Hybrid Monte Carlo," Papers 0807.4394, arXiv.org.
    7. Bornholdt, Stefan, 2022. "A q-spin Potts model of markets: Gain–loss asymmetry in stock indices as an emergent phenomenon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    8. Stefan Bornholdt, 2021. "A q-spin Potts model of markets: Gain-loss asymmetry in stock indices as an emergent phenomenon," Papers 2112.06290, arXiv.org.
    9. Tetsuya Takaishi, 2014. "Analysis of Spin Financial Market by GARCH Model," Papers 1409.0118, arXiv.org.
    10. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    11. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    12. Tetsuya Takaishi, 2009. "An Adaptive Markov Chain Monte Carlo Method for GARCH Model," Papers 0901.0992, arXiv.org.
    13. Baumann, Michael Heinrich & Baumann, Michaela & Erler, Alexander, 2019. "Limitations of stabilizing effects of fundamentalists: Facing positive feedback traders," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-26.
    14. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    15. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    16. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    17. Diep, Hung T. & Desgranges, Gabriel, 2021. "Dynamics of the price behavior in stock markets: A statistical physics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    18. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    19. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    20. Nuzzo, Simone & Morone, Andrea, 2017. "Asset markets in the lab: A literature review," Journal of Behavioral and Experimental Finance, Elsevier, vol. 13(C), pages 42-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:588:y:2022:i:c:s0378437121008001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.