IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1507.04298.html
   My bibliography  Save this paper

Modelling Financial Markets by Self-Organized Criticality

Author

Listed:
  • A. E. Biondo
  • A. Pluchino
  • A. Rapisarda

Abstract

We present a financial market model, characterized by self-organized criticality, that is able to generate endogenously a realistic price dynamics and to reproduce well-known stylized facts. We consider a community of heterogeneous traders, composed by chartists and fundamentalists, and focus on the role of informative pressure on market participants, showing how the spreading of information, based on a realistic imitative behavior, drives contagion and causes market fragility. In this model imitation is not intended as a change in the agent's group of origin, but is referred only to the price formation process. We introduce in the community also a variable number of random traders in order to study their possible beneficial role in stabilizing the market, as found in other studies. Finally we also suggest some counterintuitive policy strategies able to dampen fluctuations by means of a partial reduction of information.

Suggested Citation

  • A. E. Biondo & A. Pluchino & A. Rapisarda, 2015. "Modelling Financial Markets by Self-Organized Criticality," Papers 1507.04298, arXiv.org, revised Oct 2015.
  • Handle: RePEc:arx:papers:1507.04298
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1507.04298
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    2. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    3. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, January.
    4. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    5. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    6. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    7. George A. Akerlof & Robert J. Shiller, 2010. "Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism," Economics Books, Princeton University Press, edition 1, number 9163.
    8. Carl Chiarella, 1992. "The Dynamics of Speculative Behaviour," Working Paper Series 13, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    9. Nicholas Kaldor, 1961. "Capital Accumulation and Economic Growth," International Economic Association Series, in: D. C. Hague (ed.), The Theory of Capital, chapter 0, pages 177-222, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Pluchino & Alessio. E. Biondo & Andrea Rapisarda, 2018. "Exploring the role of talent and luck in getting success," Papers 1811.05206, arXiv.org.
    2. Zeng, Yayun & Wang, Jun & Xu, Kaixuan, 2017. "Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 364-376.
    3. Zubillaga, Bernardo J. & Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2022. "A three-state opinion formation model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    4. Kazuto Sasai & Yukio-Pegio Gunji & Tetsuo Kinoshita, 2017. "Intermittent Behavior Induced By Asynchronous Interactions In A Continuous Double Auction Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(02n03), pages 1-21, March.
    5. L. S. Di Mauro & A. Pluchino & A. E. Biondo, 2018. "A Game of Tax Evasion: evidences from an agent-based model," Papers 1809.08146, arXiv.org.
    6. Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    7. Cai, Xing & Xia, Wei & Huang, Weihua & Yang, Haijun, 2024. "Dynamics of momentum in financial markets based on the information diffusion in complex social networks," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    8. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    9. Biondo, A.E. & Pluchino, A. & Rapisarda, A., 2018. "Modeling surveys effects in political competitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 714-726.
    10. Alessandro Pluchino & Alessio Emanuele Biondo & Andrea Rapisarda, 2018. "Talent Versus Luck: The Role Of Randomness In Success And Failure," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(03n04), pages 1-31, May.
    11. Fraiman, Daniel, 2022. "A self-organized criticality participative pricing mechanism for selling zero-marginal cost products," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda, 2017. "Informative Contagion Dynamics in a Multilayer Network Model of Financial Markets," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 3(3), pages 343-366, November.
    2. Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda, 2016. "Order Book, Financial Markets and Self-Organized Criticality," Papers 1602.08270, arXiv.org.
    3. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    4. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    5. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    6. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    7. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    8. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    9. Biondo, Alessio Emanuele & Pluchino, Alessandro & Rapisarda, Andrea, 2016. "Order book, financial markets, and self-organized criticality," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 196-208.
    10. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    11. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    12. Gaunersdorfer, Andrea & Hommes, Cars H. & Wagener, Florian O.O., 2008. "Bifurcation routes to volatility clustering under evolutionary learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 27-47, July.
    13. Frank H. Westerhoff, 2009. "Exchange Rate Dynamics: A Nonlinear Survey," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 11, Edward Elgar Publishing.
    14. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    15. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.
    16. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    17. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Xue-Zhong He & Youwei Li, 2008. "Heterogeneity, convergence, and autocorrelations," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 59-79.
    19. Zhao, Zhijun & Zhang, Xiaoqi, 2022. "A continuous heterogeneous-agent model for the co-evolution of asset price and wealth distribution in financial market," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 13, July-Dece.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1507.04298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.