IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v601y2022ics0378437122003983.html
   My bibliography  Save this article

Independent Approximates enable closed-form estimation of heavy-tailed distributions

Author

Listed:
  • Nelson, Kenric P.

Abstract

A new statistical estimation method, Independent Approximates (IAs), is defined and proven to enable closed-form estimation of the parameters of heavy-tailed distributions. Given independent, identically distributed samples from a one-dimensional distribution, IAs are formed by partitioning samples into pairs, triplets, or nth -order groupings and retaining the median of those groupings that are approximately equal. The pdf of the IAs is proven to be the normalized nth power of the original density. From this property, heavy-tailed distributions are proven to have well-defined means for their IA pairs, finite second moments for their IA triplets, and a finite, well-defined (n-1)th moment for the nth grouping. Estimation of the location, scale, and shape (inverse of degree of freedom) of the generalized Pareto and Student’s t distributions are possible via a system of three equations. Performance analysis of the IA estimation methodology for the Student’s t distribution demonstrates that the method converges to the maximum likelihood estimate. Closed-form estimates of the location and scale are determined from the mean of the IA pairs and the second moment of the IA triplets, respectively. For the Student’s t distribution, the geometric mean of the original samples provides a third equation to determine the shape, though its nonlinear solution requires an iterative solver. With 10,000 samples the relative bias of the parameter estimates is less than 0.01 and the relative precision is less than ±0.1. Statistical physics applications are carried out for both a small sample (331) astrophysics dataset and a large sample (2 x 108) standard map simulation.

Suggested Citation

  • Nelson, Kenric P., 2022. "Independent Approximates enable closed-form estimation of heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
  • Handle: RePEc:eee:phsmap:v:601:y:2022:i:c:s0378437122003983
    DOI: 10.1016/j.physa.2022.127574
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122003983
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2019. "Majority-vote model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 762-770.
    2. Seul-Ki Park & Ji-Eun Choi & Dong Wan Shin, 2017. "Value at risk forecasting for volatility index," Applied Economics Letters, Taylor & Francis Journals, vol. 24(21), pages 1613-1620, December.
    3. Nelson, Kenric P. & Umarov, Sabir, 2010. "Nonlinear statistical coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2157-2163.
    4. Nelson, Kenric P. & Umarov, Sabir R. & Kon, Mark A., 2017. "On the average uncertainty for systems with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 30-43.
    5. Nelson, Kenric P. & Kon, Mark A. & Umarov, Sabir R., 2019. "Use of the geometric mean as a statistic for the scale of the coupled Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 248-257.
    6. ., 2020. "Lithuania: the battle for independence," Chapters, in: Energy Cultures, chapter 3, pages 57-66, Edward Elgar Publishing.
    7. Zubillaga, Bernardo J. & Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2022. "A three-state opinion formation model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    8. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    9. Nelson, Kenric P., 2015. "A definition of the coupled-product for multivariate coupled-exponentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 187-192.
    10. Amari, Shun-ichi & Ohara, Atsumi & Matsuzoe, Hiroshi, 2012. "Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4308-4319.
    11. Pisarenko, V. & Sornette, D., 2006. "New statistic for financial return distributions: Power-law or exponential?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 387-400.
    12. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, September.
    13. Yichen Qin & Carey E. Priebe, 2013. "Maximum L q -Likelihood Estimation via the Expectation-Maximization Algorithm: A Robust Estimation of Mixture Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 914-928, September.
    14. Rudolf Hanel & Bernat Corominas-Murtra & Bo Liu & Stefan Thurner, 2017. "Fitting power-laws in empirical data with estimators that work for all exponents," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nelson, Kenric P. & Kon, Mark A. & Umarov, Sabir R., 2019. "Use of the geometric mean as a statistic for the scale of the coupled Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 248-257.
    2. Zubillaga, Bernardo J. & Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2022. "A three-state opinion formation model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    3. Nelson, Kenric P. & Umarov, Sabir R. & Kon, Mark A., 2017. "On the average uncertainty for systems with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 30-43.
    4. Oliveira, Igor V.G. & Wang, Chao & Dong, Gaogao & Du, Ruijin & Fiore, Carlos E. & Vilela, André L.M. & Stanley, H. Eugene, 2024. "Entropy production on cooperative opinion dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    6. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    7. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    8. Lamboni, Matieyendou, 2022. "Efficient dependency models: Simulating dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 199-217.
    9. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    10. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    11. Dimitris Tsintsaris & Milan Tsompanoglou & Evangelos Ioannidis, 2024. "Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business," Mathematics, MDPI, vol. 12(8), pages 1-27, April.
    12. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    13. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    14. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    15. Nelson, Kenric P., 2015. "A definition of the coupled-product for multivariate coupled-exponentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 187-192.
    16. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
    17. A. El-Bassiouny & M. Jones, 2009. "A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 465-481, November.
    18. Peralta, Antonio F. & Khalil, Nagi & Toral, Raúl, 2020. "Ordering dynamics in the voter model with aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    19. Punzo, Antonio & Bagnato, Luca, 2022. "Dimension-wise scaled normal mixtures with application to finance and biometry," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    20. Domínguez-Molina, J. Armando & Rocha-Arteaga, Alfonso, 2007. "On the infinite divisibility of some skewed symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 644-648, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:601:y:2022:i:c:s0378437122003983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.