IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v586y2022ics0378437121007329.html
   My bibliography  Save this article

Early warning signals of financial crises using persistent homology

Author

Listed:
  • Ismail, Mohd Sabri
  • Noorani, Mohd Salmi Md
  • Ismail, Munira
  • Razak, Fatimah Abdul
  • Alias, Mohd Almie

Abstract

This study examines persistent homology to detect early warning signals of financial crises in the United States, Singapore, and Malaysia markets. Persistent homology is applied to obtain a L1-norm time series, which is then associated with critical slowing down indicators (autocorrelation function at lag 1, variance, and mean power spectrum at low frequencies). Mann–Kendall test is used to anticipate the rising trend in the indicators before financial crises. Significance, structural break, and sensitivity tests are added to validate the method’s robustness. Further, we compare the L1-norms with another representative called residual time series. In our findings, three methods, namely mean power spectrums at low frequencies of the L1-norms, variances of the residuals and mean power spectrums at low frequencies of the residuals consistently provide a period of significant rising trends and breakpoints before the Dotcom crash and Lehman Brothers bankruptcy in all markets. The outcome indicates their potential as an early warning detection tool. However, these methods depend on their parameters. Despite the dependency, we further analyze these methods by determining the threshold to cover entire trading days and record their performance based on two classification scores (probability of successful anticipation and probability of erroneous anticipation). Overall, the mean power spectrums at low frequencies of the residuals is the finest method to detect early warning signals of financial crises in all markets. It is closely followed by the mean power spectrums at low frequencies of the L1-norms, which has obtained better scores than the variances of the residuals in the US and Singapore, except for Malaysia. Besides the residuals, our study demonstrates that the L1-norms obtained from persistent homology also is a meaningful representation to detect early warning signals. In general, this study offers a framework to determine early warning signals of financial crises for risk management purposes.

Suggested Citation

  • Ismail, Mohd Sabri & Noorani, Mohd Salmi Md & Ismail, Munira & Razak, Fatimah Abdul & Alias, Mohd Almie, 2022. "Early warning signals of financial crises using persistent homology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
  • Handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007329
    DOI: 10.1016/j.physa.2021.126459
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121007329
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Tan & Siew Cheong, 2014. "Critical slowing down associated with regime shifts in the US housing market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(2), pages 1-10, February.
    2. Hayette Gatfaoui & Philippe de Peretti, 2019. "Flickering in Information Spreading Precedes Critical Transitions in Financial Markets," Post-Print hal-02098605, HAL.
    3. Andreas Joseph & Stephan Joseph & Guanrong Chen, 2013. "Cross-border Portfolio Investment Networks and Indicators for Financial Crises," Papers 1306.0215, arXiv.org, revised Jan 2014.
    4. Cees Diks & Cars Hommes & Juanxi Wang, 2019. "Critical slowing down as an early warning signal for financial crises?," Empirical Economics, Springer, vol. 57(4), pages 1201-1228, October.
    5. Huang, Yan & Kou, Gang & Peng, Yi, 2017. "Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, Elsevier, vol. 258(2), pages 692-702.
    6. Vasilis Dakos & Stephen R Carpenter & William A Brock & Aaron M Ellison & Vishwesha Guttal & Anthony R Ives & Sonia Kéfi & Valerie Livina & David A Seekell & Egbert H van Nes & Marten Scheffer, 2012. "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-20, July.
    7. Qun Zhang & Qunzhi Zhang & Didier Sornette, 2016. "Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-43, November.
    8. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    9. Marian Gidea, 2017. "Topology data analysis of critical transitions in financial networks," Papers 1701.06081, arXiv.org.
    10. Guo, Hongfeng & Xia, Shengxiang & An, Qiguang & Zhang, Xin & Sun, Weihua & Zhao, Xinyao, 2020. "Empirical study of financial crises based on topological data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    11. Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    12. James Tan & Siew Ann Cheong, 2016. "The Regime Shift Associated with the 2004–2008 US Housing Market Bubble," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-8, September.
    13. Tiziano Squartini & Iman van Lelyveld & Diego Garlaschelli, 2013. "Early-warning signals of topological collapse in interbank networks," Papers 1302.2063, arXiv.org, revised Nov 2013.
    14. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    15. Haoyu Wen & Massimo Pica Ciamarra & Siew Ann Cheong, 2018. "How one might miss early warning signals of critical transitions in time series data: A systematic study of two major currency pairs," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoyu Wen & Massimo Pica Ciamarra & Siew Ann Cheong, 2018. "How one might miss early warning signals of critical transitions in time series data: A systematic study of two major currency pairs," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-22, March.
    2. Katz, Yuri A. & Biem, Alain, 2021. "Time-resolved topological data analysis of market instabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Cees Diks & Cars Hommes & Juanxi Wang, 2019. "Critical slowing down as an early warning signal for financial crises?," Empirical Economics, Springer, vol. 57(4), pages 1201-1228, October.
    4. Tan, James P.L., 2018. "An algorithm for engineering regime shifts in one-dimensional dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 721-731.
    5. Jan Willem van den End, 2019. "Applying Complexity Theory to Interest Rates: Evidence of Critical Transitions in the Euro Area," Credit and Capital Markets, Credit and Capital Markets, vol. 52(1), pages 1-33.
    6. Andrew R. Tilman & Elisabeth H. Krueger & Lisa C. McManus & James R. Watson, 2023. "Maintaining human wellbeing as socio-environmental systems undergo regime shifts," Papers 2309.04578, arXiv.org.
    7. Georg Jäger & Christian Hofer & Marie Kapeller & Manfred Füllsack, 2017. "Hidden early-warning signals in scale-free networks," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-14, December.
    8. Qun Zhang & Qunzhi Zhang & Didier Sornette, 2016. "Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-43, November.
    9. Tilman, Andrew R. & Krueger, Elisabeth H. & McManus, Lisa C. & Watson, James R., 2024. "Maintaining human wellbeing as socio-environmental systems undergo regime shifts," Ecological Economics, Elsevier, vol. 221(C).
    10. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    11. Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    12. Azamir, Bouchaib & Bennis, Driss & Michel, Bertrand, 2022. "A simplified algorithm for identifying abnormal changes in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Katherine A Spielmann & Matthew A Peeples & Donna M Glowacki & Andrew Dugmore, 2016. "Early Warning Signals of Social Transformation: A Case Study from the US Southwest," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-18, October.
    14. Billio, Monica & Casarin, Roberto & Costola, Michele & Pasqualini, Andrea, 2016. "An entropy-based early warning indicator for systemic risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 42-59.
    15. Hayette Gatfaoui & Isabelle Nagot & Philippe de Peretti, 2016. "Are critical slowing down indicators useful to detect financial crises?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01339815, HAL.
    16. Franco Ruzzenenti & Andreas Joseph & Elisa Ticci & Pietro Vozzella & Giampaolo Gabbi, 2015. "Interactions between Financial and Environmental Networks in OECD Countries," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-12, September.
    17. Krishnadas M. & K. P. Harikrishnan & G. Ambika, 2022. "Recurrence measures and transitions in stock market dynamics," Papers 2208.03456, arXiv.org.
    18. Alessandro Spelta, 2016. "Stock prices prediction via tensor decomposition and links forecast," DISCE - Working Papers del Dipartimento di Economia e Finanza def041, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    19. Rudkin, Simon & Rudkin, Wanling & Dłotko, Paweł, 2023. "On the topology of cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 89(C).
    20. Yang, Anji & Wang, Hao & Yuan, Sanling, 2023. "Tipping time in a stochastic Leslie predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.