Critical slowing down associated with regime shifts in the US housing market
Author
Abstract
Suggested Citation
DOI: 10.1140/epjb/e2014-41038-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Darrell Jiajie Tay & Chung-I Chou & Sai-Ping Li & Shang You Tee & Siew Ann Cheong, 2016. "Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
- James Tan & Siew Ann Cheong, 2016. "The Regime Shift Associated with the 2004–2008 US Housing Market Bubble," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-8, September.
- James PL Tan, 2016. "A Generalized Population Dynamics Model of a City and an Algorithm for Engineering Regime Shifts," Papers 1612.08338, arXiv.org.
- Cees Diks & Cars Hommes & Juanxi Wang, 2019.
"Critical slowing down as an early warning signal for financial crises?,"
Empirical Economics, Springer, vol. 57(4), pages 1201-1228, October.
- Diks, C.G.H. & Hommes, C.H. & Wang, J., 2015. "Critical Slowing Down as Early Warning Signals for Financial Crises?," CeNDEF Working Papers 15-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
- Chengyi Tu & Paolo DOdorico & Samir Suweis, 2018. "Critical slowing down associated with critical transition and risk of collapse in cryptocurrency," Papers 1806.08386, arXiv.org, revised Nov 2019.
- Ismail, Mohd Sabri & Noorani, Mohd Salmi Md & Ismail, Munira & Razak, Fatimah Abdul & Alias, Mohd Almie, 2022. "Early warning signals of financial crises using persistent homology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
- Haoyu Wen & Massimo Pica Ciamarra & Siew Ann Cheong, 2018. "How one might miss early warning signals of critical transitions in time series data: A systematic study of two major currency pairs," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-22, March.
- Tan, James P.L., 2018. "An algorithm for engineering regime shifts in one-dimensional dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 721-731.
More about this item
Keywords
Statistical and Nonlinear Physics;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:87:y:2014:i:2:p:1-10:10.1140/epjb/e2014-41038-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.