IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v89y2023ics1057521923002752.html
   My bibliography  Save this article

On the topology of cryptocurrency markets

Author

Listed:
  • Rudkin, Simon
  • Rudkin, Wanling
  • Dłotko, Paweł

Abstract

Cryptocurrency markets are characterised by high volatility, high returns and comparative immaturity relative to equity and commodity markets. Topological Data Analysis (TDA) persistence norms are effective tools for the analysis of noisy dynamical systems like the cryptocurrency markets. We show how information from the shape of daily return data adds additional inference on activity within the cryptocurrency markets. TDA persistence norms embed volatility and connectedness between coins as well as incorporating information from uncertainty indexes, financial market performance and commodity returns. Our TDA measures are robust to noise and are consistent across a raft of alternative coin selections. Further, we exposit how persistence norms peak to forewarn of crashes and stay low as markets face exogenous shocks. We demonstrate the clear advantages of TDA for the study of cryptocurrency markets and develop the next steps for exploiting the potential of TDA for application to cryptocurrency markets.

Suggested Citation

  • Rudkin, Simon & Rudkin, Wanling & Dłotko, Paweł, 2023. "On the topology of cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002752
    DOI: 10.1016/j.irfa.2023.102759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521923002752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2023.102759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    2. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    3. Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
    4. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    5. John M. Griffin & Amin Shams, 2020. "Is Bitcoin Really Untethered?," Journal of Finance, American Finance Association, vol. 75(4), pages 1913-1964, August.
    6. Jiang, Yonghong & Wu, Lanxin & Tian, Gengyu & Nie, He, 2021. "Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19? – New evidence from quantile coherency analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    7. Aslanidis, Nektarios & Bariviera, Aurelio F. & Perez-Laborda, Alejandro, 2021. "Are cryptocurrencies becoming more interconnected?," Economics Letters, Elsevier, vol. 199(C).
    8. Eduard Baitinger & Samuel Flegel, 2021. "The better turbulence index? Forecasting adverse financial markets regimes with persistent homology," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 277-308, September.
    9. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    10. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    11. Qureshi, Saba & Aftab, Muhammad & Bouri, Elie & Saeed, Tareq, 2020. "Dynamic interdependence of cryptocurrency markets: An analysis across time and frequency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    12. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    13. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    14. Zięba, Damian & Kokoszczyński, Ryszard & Śledziewska, Katarzyna, 2019. "Shock transmission in the cryptocurrency market. Is Bitcoin the most influential?," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 102-125.
    15. Vidal-Tomás, David, 2022. "Which cryptocurrency data sources should scholars use?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    16. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    17. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    18. C. Alexander & M. Dakos, 2020. "A critical investigation of cryptocurrency data and analysis," Quantitative Finance, Taylor & Francis Journals, vol. 20(2), pages 173-188, February.
    19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    20. Tsang, Kwok Ping & Yang, Zichao, 2021. "The market for bitcoin transactions," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    21. Syed Jawad Hussain Shahzad & Elie Bouri & Sang Hoon Kang & Tareq Saeed, 2021. "Regime specific spillover across cryptocurrencies and the role of COVID-19," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    22. Tsang, Kwok Ping & Yang, Zichao, 2022. "Do connections pay off in the bitcoin market?," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 1-18.
    23. Bouri, Elie & Vo, Xuan Vinh & Saeed, Tareq, 2021. "Return equicorrelation in the cryptocurrency market: Analysis and determinants," Finance Research Letters, Elsevier, vol. 38(C).
    24. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    25. Pawel Dlotko & Wanling Qiu & Simon Rudkin, 2022. "Topological Data Analysis Ball Mapper for Finance," Papers 2206.03622, arXiv.org.
    26. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Wanas Al-Jarrah, Idries Mohammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 96-113.
    27. Duan, Kun & Li, Zeming & Urquhart, Andrew & Ye, Jinqiang, 2021. "Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach," International Review of Financial Analysis, Elsevier, vol. 75(C).
    28. Wang, Yudong & Pan, Zhiyuan & Wu, Chongfeng & Wu, Wenfeng, 2020. "Industry equi-correlation: A powerful predictor of stock returns," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 1-24.
    29. Qiao, Xingzhi & Zhu, Huiming & Hau, Liya, 2020. "Time-frequency co-movement of cryptocurrency return and volatility: Evidence from wavelet coherence analysis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    30. Yen, Kuang-Chieh & Cheng, Hui-Pei, 2021. "Economic policy uncertainty and cryptocurrency volatility," Finance Research Letters, Elsevier, vol. 38(C).
    31. Guo, Hongfeng & Xia, Shengxiang & An, Qiguang & Zhang, Xin & Sun, Weihua & Zhao, Xinyao, 2020. "Empirical study of financial crises based on topological data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    32. Shahzad, Syed Jawad Hussain & Anas, Muhammad & Bouri, Elie, 2022. "Price explosiveness in cryptocurrencies and Elon Musk's tweets," Finance Research Letters, Elsevier, vol. 47(PB).
    33. González, Maria de la O. & Jareño, Francisco & Skinner, Frank S., 2021. "Asymmetric interdependencies between large capital cryptocurrency and Gold returns during the COVID-19 pandemic crisis," International Review of Financial Analysis, Elsevier, vol. 76(C).
    34. Muhammad Abubakr Naeem & Imen Mbarki & Muhammed Tahir Suleman & Xuan Vinh Vo & Syed Jawad Hussain Shahzad, 2021. "Does Twitter Happiness Sentiment predict cryptocurrency?," International Review of Finance, International Review of Finance Ltd., vol. 21(4), pages 1529-1538, December.
    35. Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    36. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    37. Katsiampa, Paraskevi & Corbet, Shaen & Lucey, Brian, 2019. "High frequency volatility co-movements in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 35-52.
    38. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    39. Simon Rudkin & Wanling Qiu & Pawel Dlotko, 2021. "Uncertainty, volatility and the persistence norms of financial time series," Papers 2110.00098, arXiv.org.
    40. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    41. Alla Petukhina & Simon Trimborn & Wolfgang Karl Härdle & Hermann Elendner, 2021. "Investing with cryptocurrencies – evaluating their potential for portfolio allocation strategies," Quantitative Finance, Taylor & Francis Journals, vol. 21(11), pages 1825-1853, November.
    42. Akyildirim, Erdinc & Corbet, Shaen & Lucey, Brian & Sensoy, Ahmet & Yarovaya, Larisa, 2020. "The relationship between implied volatility and cryptocurrency returns," Finance Research Letters, Elsevier, vol. 33(C).
    43. Katz, Yuri A. & Biem, Alain, 2021. "Time-resolved topological data analysis of market instabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    44. Platanakis, Emmanouil & Urquhart, Andrew, 2020. "Should investors include Bitcoin in their portfolios? A portfolio theory approach," The British Accounting Review, Elsevier, vol. 52(4).
    45. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    46. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    47. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gunay, Samet & Goodell, John W. & Muhammed, Shahnawaz & Kirimhan, Destan, 2023. "Frequency connectedness between FinTech, NFT and DeFi: Considering linkages to investor sentiment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    2. Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
    3. Mercik, Aleksander & Słoński, Tomasz & Karaś, Marta, 2024. "Understanding crypto-asset exposure: An investigation of its impact on performance and stock sensitivity among listed companies," International Review of Financial Analysis, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    2. Elsayed, Ahmed H. & Gozgor, Giray & Lau, Chi Keung Marco, 2022. "Risk transmissions between bitcoin and traditional financial assets during the COVID-19 era: The role of global uncertainties," International Review of Financial Analysis, Elsevier, vol. 81(C).
    3. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    4. BRIK, Hatem & El OUAKDI, Jihene & FTITI, Zied, 2022. "Roles of stable versus nonstable cryptocurrencies in Bitcoin market dynamics," Research in International Business and Finance, Elsevier, vol. 62(C).
    5. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    6. Elsayed, Ahmed H. & Gozgor, Giray & Yarovaya, Larisa, 2022. "Volatility and return connectedness of cryptocurrency, gold, and uncertainty: Evidence from the cryptocurrency uncertainty indices," Finance Research Letters, Elsevier, vol. 47(PB).
    7. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    8. Etienne Harb & Charbel Bassil & Talie Kassamany & Roland Baz, 2024. "Volatility Interdependence Between Cryptocurrencies, Equity, and Bond Markets," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 951-981, March.
    9. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    10. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "Volatility spillovers and other dynamics between cryptocurrencies and the energy and bond markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 1-13.
    11. Wu, Wanshan & Tiwari, Aviral Kumar & Gozgor, Giray & Leping, Huang, 2021. "Does economic policy uncertainty affect cryptocurrency markets? Evidence from Twitter-based uncertainty measures," Research in International Business and Finance, Elsevier, vol. 58(C).
    12. Ahmed H. Elsayed & Giray Gozgor & Chi Keung Marco Lau, 2022. "Causality and dynamic spillovers among cryptocurrencies and currency markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2026-2040, April.
    13. Wang, Yizhi, 2022. "Volatility spillovers across NFTs news attention and financial markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    14. Duan, Kun & Li, Zeming & Urquhart, Andrew & Ye, Jinqiang, 2021. "Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach," International Review of Financial Analysis, Elsevier, vol. 75(C).
    15. Balcilar, Mehmet & Ozdemir, Huseyin & Agan, Busra, 2022. "Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    17. Jinxin Cui & Aktham Maghyereh, 2022. "Time–frequency co-movement and risk connectedness among cryptocurrencies: new evidence from the higher-order moments before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    18. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    19. Bouri, Elie & Jalkh, Naji, 2023. "Spillovers of joint volatility-skewness-kurtosis of major cryptocurrencies and their determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    20. Vidal-Tomás, David, 2021. "The entry and exit dynamics of the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 58(C).

    More about this item

    Keywords

    Topological data analysis; Persistence norms; Cryptocurrency returns; Volatility; Market efficiency;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.