IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v571y2021ics0378437121000881.html
   My bibliography  Save this article

Time-resolved topological data analysis of market instabilities

Author

Listed:
  • Katz, Yuri A.
  • Biem, Alain

Abstract

We apply the novel econometric method, based on the time-resolved topological data analysis, to detect approaching market instabilities in multiple sectors of North American economy. Using the Takens’ embedding and the sliding window’s technique, we detect transient loops that appear in a topological space associated with financial time series and measure their persistence. The latter is encoded in Lp-norms of real-valued functions referred to as “persistence landscapes”. We study the impact of hyperparameters of the method – the size of a rolling window and the dimensionality of the Takens’ embedding – by conducting Monte Carlo simulations with synthetic time series sampled from the Student’s t-distribution with varying degrees of freedom. These numeric experiments reveal that the average value of L1-norm is growing with a rising size of a sliding window and dimensionality of embedding. This finding drives the choice of hyperparameters of the method applied to financial time series. We collect significant evidence that the variance of L1-norm derived from daily log-returns of the sector-level aggregates of credit default swap (CDS) spreads with the sliding window of 50 days and 4D embedding can serve as a leading indicator of an approaching financial crash caused by endogenous market forces and that the equity market lagged the CDS market in this discovery.

Suggested Citation

  • Katz, Yuri A. & Biem, Alain, 2021. "Time-resolved topological data analysis of market instabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
  • Handle: RePEc:eee:phsmap:v:571:y:2021:i:c:s0378437121000881
    DOI: 10.1016/j.physa.2021.125816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121000881
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hołyst, Janusz A. & Kacperski, Krzysztof & Schweitzer, Frank, 2000. "Phase transitions in social impact models of opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 199-210.
    2. Christopher L. Culp & Andria van der Merwe & Bettina J. Stärkle, 2018. "Credit Default Swaps," Palgrave Studies in Risk and Insurance, Palgrave Macmillan, number 978-3-319-93076-3, March.
    3. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    4. Marian Gidea, 2017. "Topology data analysis of critical transitions in financial networks," Papers 1701.06081, arXiv.org.
    5. Christopher L. Culp & Andria van der Merwe & Bettina J. Stärkle, 2018. "The Informational Content of CDS Spreads," Palgrave Studies in Risk and Insurance, in: Credit Default Swaps, chapter 0, pages 157-192, Palgrave Macmillan.
    6. Miroslav Mateev & Elena Marinova, 2019. "Relation between Credit Default Swap Spreads and Stock Prices: A Non-linear Perspective," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 43(1), pages 1-26, January.
    7. Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    8. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    9. Erik Van der Straeten & Christian Beck, 2009. "Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence," Papers 0901.2271, arXiv.org, revised Sep 2009.
    10. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    11. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    12. Miroslav Mateev, 2019. "Volatility relation between credit default swap and stock market: new empirical tests," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 43(4), pages 681-712, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rudkin, Simon & Rudkin, Wanling & Dłotko, Paweł, 2023. "On the topology of cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 89(C).
    2. Simon Rudkin & Wanling Qiu & Pawel Dlotko, 2021. "Uncertainty, volatility and the persistence norms of financial time series," Papers 2110.00098, arXiv.org.
    3. Samuel W. Akingbade & Marian Gidea & Matteo Manzi & Vahid Nateghi, 2023. "Why Topological Data Analysis Detects Financial Bubbles?," Papers 2304.06877, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismail, Mohd Sabri & Noorani, Mohd Salmi Md & Ismail, Munira & Razak, Fatimah Abdul & Alias, Mohd Almie, 2022. "Early warning signals of financial crises using persistent homology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Azamir, Bouchaib & Bennis, Driss & Michel, Bertrand, 2022. "A simplified algorithm for identifying abnormal changes in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Heiberger, Raphael H., 2014. "Stock network stability in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 376-381.
    4. Kozłowska, M. & Denys, M. & Wiliński, M. & Link, G. & Gubiec, T. & Werner, T.R. & Kutner, R. & Struzik, Z.R., 2016. "Dynamic bifurcations on financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 126-142.
    5. Krishnadas M. & K. P. Harikrishnan & G. Ambika, 2022. "Recurrence measures and transitions in stock market dynamics," Papers 2208.03456, arXiv.org.
    6. Marian Gidea & Yuri Katz, 2017. "Topological Data Analysis of Financial Time Series: Landscapes of Crashes," Papers 1703.04385, arXiv.org, revised Apr 2017.
    7. Guo, Hongfeng & Xia, Shengxiang & An, Qiguang & Zhang, Xin & Sun, Weihua & Zhao, Xinyao, 2020. "Empirical study of financial crises based on topological data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    8. M., Krishnadas & Harikrishnan, K.P. & Ambika, G., 2022. "Recurrence measures and transitions in stock market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    9. Jan Willem van den End, 2019. "Applying Complexity Theory to Interest Rates: Evidence of Critical Transitions in the Euro Area," Credit and Capital Markets, Credit and Capital Markets, vol. 52(1), pages 1-33.
    10. Faruk Balli & Hatice O. Balli & Mudassar Hasan & Russell Gregory-Allen, 2020. "Economic policy uncertainty spillover effects on sectoral equity returns of New Zealand," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(4), pages 670-686, October.
    11. Fushing, Hsieh & Jordà, Òscar & Beisner, Brianne & McCowan, Brenda, 2014. "Computing systemic risk using multiple behavioral and keystone networks: The emergence of a crisis in primate societies and banks," International Journal of Forecasting, Elsevier, vol. 30(3), pages 797-806.
    12. Nils Bertschinger & Oliver Pfante, 2020. "Early Warning Signs of Financial Market Turmoils," JRFM, MDPI, vol. 13(12), pages 1-24, November.
    13. Mensi, Walid & Shahzad, Syed Jawad Hussain & Hammoudeh, Shawkat & Hkiri, Besma & Hamed Al Yahyaee, Khamis, 2019. "Long-run relationships between US financial credit markets and risk factors: Evidence from the quantile ARDL approach," Finance Research Letters, Elsevier, vol. 29(C), pages 101-110.
    14. Haoyu Wen & Massimo Pica Ciamarra & Siew Ann Cheong, 2018. "How one might miss early warning signals of critical transitions in time series data: A systematic study of two major currency pairs," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-22, March.
    15. Foglia, Matteo & Di Tommaso, Caterina & Wang, Gang-Jin & Pacelli, Vincenzo, 2024. "Interconnectedness between stock and credit markets: The role of European G-SIBs in a multilayer perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    16. Christian Manicaro, 2023. "Sectoral and Regional Volatility Connectedness: The Case of CDS Spreads and Equities," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 15(4), pages 1-8, April.
    17. Javier Sánchez García & Salvador Cruz Rambaud, 2024. "The network econometrics of financial concentration," Review of Managerial Science, Springer, vol. 18(7), pages 2007-2045, July.
    18. Cees Diks & Cars Hommes & Juanxi Wang, 2019. "Critical slowing down as an early warning signal for financial crises?," Empirical Economics, Springer, vol. 57(4), pages 1201-1228, October.
    19. Qun Zhang & Qunzhi Zhang & Didier Sornette, 2016. "Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-43, November.
    20. Salvador Pueyo, 2014. "Ecological Econophysics for Degrowth," Sustainability, MDPI, vol. 6(6), pages 1-53, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:571:y:2021:i:c:s0378437121000881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.