IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v633y2024ics0378437123009159.html
   My bibliography  Save this article

Effect of autonomous vehicles on car-following behavior of human drivers: Analysis based on structural equation models

Author

Listed:
  • Li, Xia
  • You, Zhijian
  • Ma, Xinwei
  • Pang, Xiaomin
  • Min, Xuefeng
  • Cui, Hongjun

Abstract

Road traffic will experience a transition towards a mixed traffic flow, consisting of both autonomous vehicles (AVs) and human-driving vehicles (HVs), scenarios where HV drivers follow AVs will inevitably arise. This necessitates a comprehensive and in-depth exploration of driver behavior in such contexts, particularly focusing on the changes in their following behavior. To investigate the factors that influence the following behavior of HV drivers when following AVs in a human-machine mixed driving environment. Specifically, this study examines the impact of four variables on following intentions and following distance: driver’s understanding of AV performance, safety trust, tolerance for slow driving, and the driver’s perception of traffic flow conditions. To this end, a model framework is constructed that captures the relationships among these factors. A total of 376 valid samples were obtained through a survey. After verifying the internal consistency and reliability of the data, a structural equation model was utilized to conduct path analysis and mediation effect analysis to examine the relationships among the influencing factors. The results indicate that safety trust has a significant positive impact on following intentions, while traffic environmental perception has a significant negative impact. Safety trust has a significant negative impact on following distance, while tolerance for slow driving has a significant positive impact. Environmental perception and understanding of vehicle performance only indirectly influence following distance through their effects on safety trust and tolerance for slow driving. Among all factors, safety trust has the greatest impact on both following intentions and following distance. The results of this study can serve as a foundation for analyzing vehicle interactive behavior in human-machine mixed driving environments and as a basis for parameter calibration of car-following models.

Suggested Citation

  • Li, Xia & You, Zhijian & Ma, Xinwei & Pang, Xiaomin & Min, Xuefeng & Cui, Hongjun, 2024. "Effect of autonomous vehicles on car-following behavior of human drivers: Analysis based on structural equation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
  • Handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123009159
    DOI: 10.1016/j.physa.2023.129360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123009159
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    2. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    3. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    4. Ye, Lanhang & Yamamoto, Toshiyuki, 2019. "Evaluating the impact of connected and autonomous vehicles on traffic safety," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    5. Zhu, H.B. & Zhou, Y.J. & Wu, W.J., 2020. "Modeling traffic flow mixed with automated vehicles considering drivers ’ character difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Chen, Yingda & Kong, Dewen & Sun, Lishan & Zhang, Tong & Song, Yongchang, 2022. "Fundamental diagram and stability analysis for heterogeneous traffic flow considering human-driven vehicle driver’s acceptance of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    7. Lee, Yi-Ching & Momen, Ali & LaFreniere, Jennifer, 2021. "Attributions of social interactions: Driving among self-driving vs. conventional vehicles," Technology in Society, Elsevier, vol. 66(C).
    8. Jing, Peng & Wang, Baihui & Cai, Yunhao & Wang, Bichen & Huang, Jiahui & Yang, Chenglu & Jiang, Chengxi, 2023. "What is the public really concerned about the AV crash? Insights from a combined analysis of social media and questionnaire survey," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    9. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    10. Jing-Zhi Huang & Zhan Shi, 2021. "What Do We Know About Corporate Bond Returns?," Annual Review of Financial Economics, Annual Reviews, vol. 13(1), pages 363-399, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Chen, Yingda & Li, Keping & Zhang, Lun & Chen, Yili & Xiao, Xue, 2024. "Modeling and analysis of mixed traffic flow capacity and stability considering human-driven vehicle drivers' trust attitude towards intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    3. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. Wang, Xinke & Zhang, Jian & Li, Honghai & He, Zhengbing, 2023. "A mixed traffic car-following behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    5. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    6. Guangyang Hou, 2023. "Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    7. Pei, Yulong & Pan, Sheng & Wen, Yuhang, 2024. "Analysis of roadway capacity for heterogeneous traffic flows considering the degree of trust of drivers of HVs in CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    8. Zhang, Futao & Qian, Yongsheng & Zeng, Junwei & Xu, Dejie & Li, Haijun, 2023. "Stability and safety analysis of mixed traffic flow considering network function degradation and platoon driving on the road with a slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    9. Cosmo, Valeria Di & O’Hora, Denis, 2017. "Nudging electricity consumption using TOU pricing and feedback: evidence from Irish households," Journal of Economic Psychology, Elsevier, vol. 61(C), pages 1-14.
    10. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    11. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    12. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    13. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    14. Beatty, Timothy K.M. & Katare, Bhagyashree, 2018. "Low-cost approaches to increasing gym attendance," Journal of Health Economics, Elsevier, vol. 61(C), pages 63-76.
    15. Becker, Jörg & Distel, Bettina & Grundmann, Matthias & Hupperich, Thomas & Kersting, Norbert & Löschel, Andreas & Parreira do Amaral, Marcelo & Scholta, Hendrik, 2021. "Challenges and potentials of digitalisation for small and mid-sized towns: Proposition of a transdisciplinary research agenda," ERCIS Working Papers 36, University of Münster, European Research Center for Information Systems (ERCIS).
    16. Syed Hasan & Odmaa Narantungalag, & Martin Berka, 2022. "The intended and unintended consequences of large electricity subsidies: evidence from Mongolia," Discussion Papers 2202, School of Economics and Finance, Massey University, New Zealand.
    17. ITO Koichiro & IDA Takanori & TANAKA Makoto, 2015. "The Persistence of Moral Suasion and Economic Incentives: Field experimental evidence from energy demand," Discussion papers 15014, Research Institute of Economy, Trade and Industry (RIETI).
    18. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    19. Kenneth T. Gillingham & Sébastien Houde & Arthur A. van Benthem, 2021. "Consumer Myopia in Vehicle Purchases: Evidence from a Natural Experiment," American Economic Journal: Economic Policy, American Economic Association, vol. 13(3), pages 207-238, August.
    20. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123009159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.