IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v379y2007i1p274-290.html
   My bibliography  Save this article

Effect of adaptive cruise control systems on mixed traffic flow near an on-ramp

Author

Listed:
  • Davis, L.C.

Abstract

Mixed traffic flow consisting of vehicles equipped with adaptive cruise control (ACC) and manually driven vehicles is analyzed using car-following simulations. Simulations of merging from an on-ramp onto a freeway reported in the literature have not thus far demonstrated a substantial positive impact of ACC. In this paper cooperative merging for ACC vehicles is proposed to improve throughput and increase distance traveled in a fixed time. In such a system an ACC vehicle senses not only the preceding vehicle in the same lane but also the vehicle immediately in front in the other lane. Prior to reaching the merge region, the ACC vehicle adjusts its velocity to ensure that a safe gap for merging is obtained. If on-ramp demand is moderate, cooperative merging produces significant improvement in throughput (20%) and increases up to 3.6km in distance traveled in 600s for 50% ACC mixed flow relative to the flow of all-manual vehicles. For large demand, it is shown that autonomous merging with cooperation in the flow of all ACC vehicles leads to throughput limited only by the downstream capacity, which is determined by speed limit and headway time.

Suggested Citation

  • Davis, L.C., 2007. "Effect of adaptive cruise control systems on mixed traffic flow near an on-ramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 274-290.
  • Handle: RePEc:eee:phsmap:v:379:y:2007:i:1:p:274-290
    DOI: 10.1016/j.physa.2006.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106013690
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davis, L.C., 2012. "Mitigation of congestion at a traffic bottleneck with diversion and lane restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1679-1691.
    2. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    3. Quan Yu & Linlong Lei & Yuqi Bao & Li Wang, 2022. "Research on Safety and Traffic Efficiency of Mixed Traffic Flows in the Converging Section of a Super-Freeway Ramp," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    4. Yang, Da & Jin, Peter (Jing) & Pu, Yun & Ran, Bin, 2014. "Stability analysis of the mixed traffic flow of cars and trucks using heterogeneous optimal velocity car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 371-383.
    5. Guo, Lantian & Zhao, Xiangmo & Yu, Shaowei & Li, Xiuhai & Shi, Zhongke, 2017. "An improved car-following model with multiple preceding cars’ velocity fluctuation feedback," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 436-444.
    6. Diakaki, Christina & Papageorgiou, Markos & Papamichail, Ioannis & Nikolos, Ioannis, 2015. "Overview and analysis of Vehicle Automation and Communication Systems from a motorway traffic management perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 147-165.
    7. Zhang, Peng & Zhu, Huibing & Zhou, Yijiang, 2022. "Modeling cooperative driving strategies of automated vehicles considering trucks’ behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:379:y:2007:i:1:p:274-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.