IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v577y2021ics0378437121003265.html
   My bibliography  Save this article

Analyzing spatio-temporal impacts of extreme rainfall events on metro ridership characteristics

Author

Listed:
  • Zhou, Yufeng
  • Li, Zihao
  • Meng, Yangyang
  • Li, Zhongwen
  • Zhong, Maohua

Abstract

Extreme rainfall events, such as heavy rainfall and typhoon, can cause unexpected disruptions to the metro ridership and operating system, resulting in severe consequences such as infrastructure malfunctions, service termination and system paralysis. This paper focuses on the spatio-temporal impacts and resilience assessment of extreme rainfall events on metro ridership. The ridership data used in this paper are from the Automatic Fare Collection (AFC) system in Shenzhen Metro, and the time ranges from May to September in 2017 and 2018 with the 15-minute granularity. This paper not only utilizes big data to analyze the spatio-temporal characteristics of passenger flow under heavy rainfall and typhoon, but also innovatively introduces the meteorological warning signals and ridership resilience curve to analyze the resilience of ridership. The main results reveal that the general heavy rainfall affects passenger flow in the spatio-temporal imbalance. Especially for the spatial aspect, the imbalance of direction and section in peak hours significantly aggravates and the section passenger volume is even larger than usual. For typhoon events, extreme weather can strongly affect the distributions and recovery of metro ridership. Stronger typhoons can have a greater impact on resilience, but continuous rainfall can lead to a longer recovery time. The study results can help metro management agencies better understand the impacts of extreme weather on metro ridership to build a more weather-resilience metro system.

Suggested Citation

  • Zhou, Yufeng & Li, Zihao & Meng, Yangyang & Li, Zhongwen & Zhong, Maohua, 2021. "Analyzing spatio-temporal impacts of extreme rainfall events on metro ridership characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
  • Handle: RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121003265
    DOI: 10.1016/j.physa.2021.126053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121003265
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2015. "Investigating the impacts of weather variability on individual’s daily activity–travel patterns: A comparison between commuters and non-commuters in Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 47-64.
    2. Ling, Ximan & Peng, Yang & Sun, Shilin & Li, Panpan & Wang, Pu, 2018. "Uncovering correlation between train delay and train exposure to bad weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1152-1159.
    3. Lee, Keumsook & Jung, Woo-Sung & Park, Jong Soo & Choi, M.Y., 2008. "Statistical analysis of the Metropolitan Seoul Subway System: Network structure and passenger flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6231-6234.
    4. Pang, Ming-bao & Zheng, Sha-sha & Cai, Zhang-hui, 2015. "Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 161-170.
    5. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    6. Kashfi, Syeed Anta & Bunker, Jonathan M. & Yigitcanlar, Tan, 2016. "Modelling and analysing effects of complex seasonality and weather on an area's daily transit ridership rate," Journal of Transport Geography, Elsevier, vol. 54(C), pages 310-324.
    7. Wang, Lei & Zhang, Qian & Cai, Yun & Zhang, Jianlin & Ma, Qingguo, 2013. "Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2470-2478.
    8. Singhal, Abhishek & Kamga, Camille & Yazici, Anil, 2014. "Impact of weather on urban transit ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 379-391.
    9. Murray, Kyle B. & Di Muro, Fabrizio & Finn, Adam & Popkowski Leszczyc, Peter, 2010. "The effect of weather on consumer spending," Journal of Retailing and Consumer Services, Elsevier, vol. 17(6), pages 512-520.
    10. Arana, P. & Cabezudo, S. & Peñalba, M., 2014. "Influence of weather conditions on transit ridership: A statistical study using data from Smartcards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 1-12.
    11. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    12. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    13. Jiang, Shixiong & Guan, Wei & Zhang, Wenyi & Chen, Xu & Yang, Liu, 2017. "Human mobility in space from three modes of public transportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 227-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    3. Jiang, Shixiong & Cai, Canhuang, 2022. "Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China," Transport Policy, Elsevier, vol. 127(C), pages 158-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    2. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    3. Kevin Lanza & Casey P. Durand, 2021. "Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    4. Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.
    5. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
    6. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    7. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    8. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.
    9. Zanni, Alberto M. & Ryley, Tim J., 2015. "The impact of extreme weather conditions on long distance travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 305-319.
    10. Jiang, Shixiong & Guan, Wei & Zhang, Wenyi & Chen, Xu & Yang, Liu, 2017. "Human mobility in space from three modes of public transportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 227-238.
    11. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
    12. Zhao, Jinbao & Wang, Jian & Xing, Zhaomin & Luan, Xin & Jiang, Yang, 2018. "Weather and cycling: Mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 119-135.
    13. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    15. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    16. Timothy Otim & Leandro Dörfer & Dina Bousdar Ahmed & Estefania Munoz Diaz, 2022. "Modeling the Impact of Weather and Context Data on Transport Mode Choices: A Case Study of GPS Trajectories from Beijing," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    17. Wang, Haoyun & Noland, Robert B., 2021. "Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City," Transport Policy, Elsevier, vol. 106(C), pages 262-270.
    18. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).
    19. Peng Guo & Yanling Sun & Qiyi Chen & Junrong Li & Zifei Liu, 2022. "The Impact of Rainfall on Urban Human Mobility from Taxi GPS Data," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    20. Kashfi, Syeed Anta & Bunker, Jonathan M. & Yigitcanlar, Tan, 2016. "Modelling and analysing effects of complex seasonality and weather on an area's daily transit ridership rate," Journal of Transport Geography, Elsevier, vol. 54(C), pages 310-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121003265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.