IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v483y2017icp227-238.html
   My bibliography  Save this article

Human mobility in space from three modes of public transportation

Author

Listed:
  • Jiang, Shixiong
  • Guan, Wei
  • Zhang, Wenyi
  • Chen, Xu
  • Yang, Liu

Abstract

The human mobility patterns have drew much attention from researchers for decades, considering about its importance for urban planning and traffic management. In this study, the taxi GPS trajectories, smart card transaction data of subway and bus from Beijing are utilized to model human mobility in space. The original datasets are cleaned and processed to attain the displacement of each trip according to the origin and destination locations. Then, the Akaike information criterion is adopted to screen out the best fitting distribution for each mode from candidate ones. The results indicate that displacements of taxi trips follow the exponential distribution. Besides, the exponential distribution also fits displacements of bus trips well. However, their exponents are significantly different. Displacements of subway trips show great specialties and can be well fitted by the gamma distribution. It is obvious that human mobility of each mode is different. To explore the overall human mobility, the three datasets are mixed up to form a fusion dataset according to the annual ridership proportions. Finally, the fusion displacements follow the power-law distribution with an exponential cutoff. It is innovative to combine different transportation modes to model human mobility in the city.

Suggested Citation

  • Jiang, Shixiong & Guan, Wei & Zhang, Wenyi & Chen, Xu & Yang, Liu, 2017. "Human mobility in space from three modes of public transportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 227-238.
  • Handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:227-238
    DOI: 10.1016/j.physa.2017.04.182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117304922
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Chaogui & Ma, Xiujun & Tong, Daoqin & Liu, Yu, 2012. "Intra-urban human mobility patterns: An urban morphology perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1702-1717.
    2. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    3. Ryuichi Kitamura & Cynthia Chen & Ram Pendyala & Ravi Narayanan, 2000. "Micro-simulation of daily activity-travel patterns for travel demand forecasting," Transportation, Springer, vol. 27(1), pages 25-51, February.
    4. Baldwin Hess, Daniel, 2009. "Access to Public Transit and Its Influence on Ridership for Older Adults in Two U.S. Cities," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(1), pages 3-27.
    5. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    6. Singhal, Abhishek & Kamga, Camille & Yazici, Anil, 2014. "Impact of weather on urban transit ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 379-391.
    7. Arana, P. & Cabezudo, S. & Peñalba, M., 2014. "Influence of weather conditions on transit ridership: A statistical study using data from Smartcards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 1-12.
    8. Yu Liu & Zhengwei Sui & Chaogui Kang & Yong Gao, 2014. "Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    9. Sun, J.B. & Yuan, J. & Wang, Y. & Si, H.B. & Shan, X.M., 2011. "Exploring space–time structure of human mobility in urban space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 929-942.
    10. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2015. "The influence of weather characteristics variability on individual’s travel mode choice in different seasons and regions in Sweden," Transport Policy, Elsevier, vol. 41(C), pages 147-158.
    11. Wang, Wenjun & Pan, Lin & Yuan, Ning & Zhang, Sen & Liu, Dong, 2015. "A comparative analysis of intra-city human mobility by taxi," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 134-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yufeng & Li, Zihao & Meng, Yangyang & Li, Zhongwen & Zhong, Maohua, 2021. "Analyzing spatio-temporal impacts of extreme rainfall events on metro ridership characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    2. Xia, Dawen & Jiang, Shunying & Yang, Nan & Hu, Yang & Li, Yantao & Li, Huaqing & Wang, Lin, 2021. "Discovering spatiotemporal characteristics of passenger travel with mobile trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Songkorn Siangsuebchart & Sarawut Ninsawat & Apichon Witayangkurn & Surachet Pravinvongvuth, 2021. "Public Transport GPS Probe and Rail Gate Data for Assessing the Pattern of Human Mobility in the Bangkok Metropolitan Region, Thailand," Sustainability, MDPI, vol. 13(4), pages 1-29, February.
    4. Xia, Dong & Zheng, Linjiang & Tang, Yi & Cai, Xiaolin & Chen, Li & Sun, Dihua, 2022. "Dynamic traffic prediction for urban road network with the interpretable model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    5. Sui, Yi & Shao, Fengjing & Yu, Xiang & Sun, Rencheng & Li, Shujing, 2019. "Public transport network model based on layer operations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 984-995.
    6. Yanyan Chen & Zheng Zhang & Tianwen Liang, 2019. "Assessing Urban Travel Patterns: An Analysis of Traffic Analysis Zone-Based Mobility Patterns," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    7. Zheng, Linjiang & Xia, Dong & Zhao, Xin & Tan, Longyou & Li, Hang & Chen, Li & Liu, Weining, 2018. "Spatial–temporal travel pattern mining using massive taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 24-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
    2. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    4. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.
    5. Xia, Dawen & Jiang, Shunying & Yang, Nan & Hu, Yang & Li, Yantao & Li, Huaqing & Wang, Lin, 2021. "Discovering spatiotemporal characteristics of passenger travel with mobile trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Zheng, Linjiang & Xia, Dong & Zhao, Xin & Tan, Longyou & Li, Hang & Chen, Li & Liu, Weining, 2018. "Spatial–temporal travel pattern mining using massive taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 24-41.
    7. Zhou, Yufeng & Li, Zihao & Meng, Yangyang & Li, Zhongwen & Zhong, Maohua, 2021. "Analyzing spatio-temporal impacts of extreme rainfall events on metro ridership characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    8. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    9. Chen, Yanguang, 2015. "The distance-decay function of geographical gravity model: Power law or exponential law?," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 174-189.
    10. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    11. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    12. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    13. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    15. Milne, Dave & Watling, David, 2019. "Big data and understanding change in the context of planning transport systems," Journal of Transport Geography, Elsevier, vol. 76(C), pages 235-244.
    16. Mengyao Ren & Yaoyu Lin & Meihan Jin & Zhongyuan Duan & Yongxi Gong & Yu Liu, 2020. "Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records," Transportation, Springer, vol. 47(4), pages 1607-1629, August.
    17. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    18. Timothy Otim & Leandro Dörfer & Dina Bousdar Ahmed & Estefania Munoz Diaz, 2022. "Modeling the Impact of Weather and Context Data on Transport Mode Choices: A Case Study of GPS Trajectories from Beijing," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    19. Kou, Zhaoyu & Cai, Hua, 2019. "Understanding bike sharing travel patterns: An analysis of trip data from eight cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 785-797.
    20. Peng Guo & Yanling Sun & Qiyi Chen & Junrong Li & Zifei Liu, 2022. "The Impact of Rainfall on Urban Human Mobility from Taxi GPS Data," Sustainability, MDPI, vol. 14(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:227-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.