IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v577y2021ics0378437121002387.html
   My bibliography  Save this article

Traffic congestion mechanism in mega-airport surface

Author

Listed:
  • Jiang, Yu
  • Xue, Qingwen
  • Wang, Yasha
  • Cai, Mengting
  • Zhang, Honghai
  • Li, Yahui

Abstract

In this paper, guided by macroscopic cell transmission models, a cell transmission model of aircraft traffic flow on runways, taxiways and aprons was established to deduce and analyze the evolution rules of an airport surface traffic. The model was simulated by adopting data from a large domestic airport in China. The relationship between three parameters of traffic flow on taxiways was evaluated, and the airport surface traffic flow characteristics were analyzed. Moreover, this paper macroscopically analyzed the characteristics of spatial–temporal distribution of airport surface recurrent and non-recurrent traffic congestion. Simulation results showed that arrival rates and pushback rates had significant influence on the formation and dissipation of recurrent traffic congestion in different phases of the surface aircraft traffic flow. When the arrival rate was 0.3 aircraft/minute and the pushback rate was 0.23 aircraft/minute, the speed of aircraft on taxiways was high, the density and flow were large, and the aircraft had a high degree of obstacle-free taxiing. At this time, the airport ran smoothly and the surface network operation efficiency was high. Compared with the arrival rate, the outward expansion trend of each parameter was more obvious when the pushback rate changed. Parallel taxiways are less robust than apron taxiways and connect taxiways.

Suggested Citation

  • Jiang, Yu & Xue, Qingwen & Wang, Yasha & Cai, Mengting & Zhang, Honghai & Li, Yahui, 2021. "Traffic congestion mechanism in mega-airport surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
  • Handle: RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121002387
    DOI: 10.1016/j.physa.2021.125966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121002387
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Dan & Hu, Minghua & Zhang, Honghai & Yin, Jianan & Han, Ke, 2017. "A network based dynamic air traffic flow model for en route airspace system traffic flow optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 1-19.
    2. Zixuan Peng & Wenxuan Shan & Peng Jia & Bin Yu & Yonglei Jiang & Baozhen Yao, 2020. "Stable ride-sharing matching for the commuters with payment design," Transportation, Springer, vol. 47(1), pages 1-21, February.
    3. Weiszer, Michal & Chen, Jun & Locatelli, Giorgio, 2015. "An integrated optimisation approach to airport ground operations to foster sustainability in the aviation sector," Applied Energy, Elsevier, vol. 157(C), pages 567-582.
    4. Guépet, Julien & Briant, Olivier & Gayon, Jean-Philippe & Acuna-Agost, Rodrigo, 2017. "Integration of aircraft ground movements and runway operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 131-149.
    5. Nan Li & Yu Sun & Jian Yu & Jian-Cheng Li & Hong-fei Zhang & Sangbing Tsai, 2019. "An Empirical Study on Low Emission Taxiing Path Optimization of Aircrafts on Airport Surfaces from the Perspective of Reducing Carbon Emissions," Energies, MDPI, vol. 12(9), pages 1-19, April.
    6. Ming Zhang & Qianwen Huang & Sihan Liu & Huiying Li, 2019. "Multi-Objective Optimization of Aircraft Taxiing on the Airport Surface with Consideration to Taxiing Conflicts and the Airport Environment," Sustainability, MDPI, vol. 11(23), pages 1-27, November.
    7. Yu, Chuhang & Zhang, Dong & Henry Lau, H.Y.K., 2017. "A heuristic approach for solving an integrated gate reassignment and taxi scheduling problem," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 189-196.
    8. Chenglong Chu & Na Xie & Xiqun Chen & Yuxin Wu & Xiaoxiao Sun, 2015. "Temporal-Spatial Analysis of Traffic Congestion Based on Modified CTM," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, October.
    9. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    10. Qian, Yong-Sheng & Feng, Xiao & Zeng, Jun-Wei, 2017. "A cellular automata traffic flow model for three-phase theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 509-526.
    11. Qi, Le & Zheng, Zhongyi & Gang, Longhui, 2017. "A cellular automaton model for ship traffic flow in waterways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 705-717.
    12. Li, Qi-Lang & Wong, S.C. & Min, Jie & Tian, Shuo & Wang, Bing-Hong, 2016. "A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 128-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shuiwang & Wu, Lingxiao & Ng, Kam K.H. & Liu, Wei & Wang, Kun, 2024. "How airports enhance the environmental sustainability of operations: A critical review from the perspective of Operations Research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    3. Hu, Xiaojian & Qiao, Longqi & Hao, Xiatong & Lin, Chenxi & Liu, Tenghui, 2022. "Research on the impact of entry points on urban arterial roads in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    4. Hua, Wei & Yue, Yixiang & Wei, Zhenlin & Chen, Jianhua & Wang, Wenrong, 2020. "A cellular automata traffic flow model with spatial variation in the cell width," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    5. Xiaoyuan Wang & Junyan Han & Chenglin Bai & Huili Shi & Jinglei Zhang & Gang Wang, 2021. "Research on the Impacts of Generalized Preceding Vehicle Information on Traffic Flow in V2X Environment," Future Internet, MDPI, vol. 13(4), pages 1-17, March.
    6. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    7. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    8. Zhou, Shirui & Ling, Shuai & Zhu, Chenqiang & Tian, Junfang, 2022. "Cellular automaton model with the multi-anticipative effect to reproduce the empirical findings of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    9. Hu, Rong & Wang, Deyun & Feng, Huilin & Zhang, Junfeng & Pan, Xiaoran & Deng, Songwu, 2024. "Joint gate-runway scheduling considering carbon emissions, airport noise and ground-air coordination," Journal of Air Transport Management, Elsevier, vol. 116(C).
    10. Hu, Xiaojian & Hao, Xiatong & Wang, Han & Su, Ziyi & Zhang, Fang, 2020. "Research on on-street temporary parking effects based on cellular automaton model under the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Cui, Nan & Chen, Bokui & Zhang, Kai & Zhang, Yi & Liu, Xiaotong & Zhou, Jun, 2019. "Effects of route guidance strategies on traffic emissions in intelligent transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 32-44.
    12. Chacoma, A. & Abramson, G. & Kuperman, M.N., 2021. "A phase transition induced by traffic lights on a single lane road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    13. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    14. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Tafreshian, Amirmahdi & Masoud, Neda, 2022. "A truthful subsidy scheme for a peer-to-peer ridesharing market with incomplete information," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 130-161.
    16. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    17. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    18. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    19. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    20. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121002387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.