IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v456y2016icp128-134.html
   My bibliography  Save this article

A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

Author

Listed:
  • Li, Qi-Lang
  • Wong, S.C.
  • Min, Jie
  • Tian, Shuo
  • Wang, Bing-Hong

Abstract

This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

Suggested Citation

  • Li, Qi-Lang & Wong, S.C. & Min, Jie & Tian, Shuo & Wang, Bing-Hong, 2016. "A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 128-134.
  • Handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:128-134
    DOI: 10.1016/j.physa.2016.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300243
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Fumi & Utsumi, Shinobu & Tanimoto, Jun, 2022. "Underlying social dilemmas in mixed traffic flow with lane changes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Fu, Ding-Jun & Li, Qi-Lang & Jiang, Rui & Wang, Bing-Hong, 2020. "A simple cellular automaton model with dual cruise-control limit in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    3. Jiang, Yu & Xue, Qingwen & Wang, Yasha & Cai, Mengting & Zhang, Honghai & Li, Yahui, 2021. "Traffic congestion mechanism in mega-airport surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    4. Qi, Le & Zheng, Zhongyi & Gang, Longhui, 2017. "Marine traffic model based on cellular automaton: Considering the change of the ship’s velocity under the influence of the weather and sea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 480-494.
    5. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    6. Lin, XuXun & Yuan, PengCheng, 2018. "A dynamic parking charge optimal control model under perspective of commuters’ evolutionary game behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1096-1110.
    7. Hu, Xiaojian & Qiao, Longqi & Hao, Xiatong & Lin, Chenxi & Liu, Tenghui, 2022. "Research on the impact of entry points on urban arterial roads in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:128-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.