IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v570y2021ics037843712100090x.html
   My bibliography  Save this article

Broken detailed balance and non-equilibrium dynamics in noisy social learning models

Author

Listed:
  • Vaidya, Tushar
  • Chotibut, Thiparat
  • Piliouras, Georgios

Abstract

We propose new Degroot-type social learning models with noisy feedback in continuous time. Unlike the standard Degroot framework, noisy information frameworks destroy consensus formation. On the other hand, noisy opinion dynamics converge to the equilibrium distribution that encapsulates correlations among agents’ opinions. Interestingly, such an equilibrium distribution is also a non-equilibrium steady state (NESS) with a non-zero probabilistic current loop. Thus, noisy information source leads to a NESS at long times that encodes persistent correlated opinion dynamics of learning agents. Our model provides a simple realization of NESS in the context of social learning. Other phenomena such as synchronization of opinions when agents are subject to a common noise are also studied.

Suggested Citation

  • Vaidya, Tushar & Chotibut, Thiparat & Piliouras, Georgios, 2021. "Broken detailed balance and non-equilibrium dynamics in noisy social learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
  • Handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s037843712100090x
    DOI: 10.1016/j.physa.2021.125818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712100090X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Lorenz, 2007. "Continuous Opinion Dynamics Under Bounded Confidence: A Survey," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(12), pages 1819-1838.
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    3. Ren, Fu-Yao & Liang, Jin-Rong & Qiu, Wei-Yuan & Xiao, Jian-Bin, 2007. "Asymptotic behavior of a fractional Fokker–Planck-type equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 165-173.
    4. Stanley, H.E. & Afanasyev, V. & Amaral, L.A.N. & Buldyrev, S.V. & Goldberger, A.L. & Havlin, S. & Leschhorn, H. & Maass, P. & Mantegna, R.N. & Peng, C.-K. & Prince, P.A. & Salinger, M.A. & Stanley, M., 1996. "Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 224(1), pages 302-321.
    5. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    6. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    7. Henkel, Christof, 2017. "From quantum mechanics to finance: Microfoundations for jumps, spikes and high volatility phases in diffusion price processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 447-458.
    8. Schinckus, Christophe, 2018. "Ising model, econophysics and analogies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 95-103.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    10. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    11. Foucault, Thierry & Pagano, Marco & Roell, Ailsa, 2013. "Market Liquidity: Theory, Evidence, and Policy," OUP Catalogue, Oxford University Press, number 9780199936243.
    12. Hans Föllmer & Martin Schweizer, 1993. "A Microeconomic Approach to Diffusion Models For Stock Prices," Mathematical Finance, Wiley Blackwell, vol. 3(1), pages 1-23, January.
    13. Frédéric Abergel & Anirban Chakraborti & B.K. Chakrabarti & M. Mitra, 2011. "Econophysics of order-driven markets," Post-Print hal-00872396, HAL.
    14. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    15. Liu, Zhihong & Ma, Jianfeng & Zeng, Yong & Yang, Li & Huang, Qiping & Wu, Hongliang, 2014. "On the control of opinion dynamics in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 183-198.
    16. Ulrich Horst, 2005. "Financial price fluctuations in a stock market model with many interacting agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(4), pages 917-932, June.
    17. Arun G. Chandrasekhar & Horacio Larreguy & Juan Pablo Xandri, 2015. "Testing Models of Social Learning on Networks: Evidence from a Lab Experiment in the Field," NBER Working Papers 21468, National Bureau of Economic Research, Inc.
    18. da Fonseca, Regina C.B. & Figueiredo, Annibal & de Castro, Márcio T. & Mendes, Fábio M., 2013. "Generalized Ornstein–Uhlenbeck process by Doob’s theorem and the time evolution of financial prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1671-1680.
    19. Galayda, S. & Barany, E., 2012. "Stochastic differential equation derivation: Comparison of the Markov method versus the additive method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4564-4574.
    20. Hossein Noorazar & Kevin R. Vixie & Arghavan Talebanpour & Yunfeng Hu, 2020. "From classical to modern opinion dynamics," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-60, July.
    21. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    22. Lima, Leonardo S. & Oliveira, S.C. & Abeilice, A.F. & Melgaço, J.H.C., 2019. "Breaks down of the modeling of the financial market with addition of non-linear terms in the Itô stochastic process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    23. Eab, Chai Hok & Lim, S.C., 2018. "Ornstein–Uhlenbeck process with fluctuating damping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 790-803.
    24. Gajda, Janusz & Wyłomańska, Agnieszka, 2014. "Fokker–Planck type equations associated with fractional Brownian motion controlled by infinitely divisible processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 104-113.
    25. Ramsza, Michal & Seymour, Robert M., 2010. "Fictitious play in an evolutionary environment," Games and Economic Behavior, Elsevier, vol. 68(1), pages 303-324, January.
    26. Xiao Zhang & Cristopher Moore & Mark E. J. Newman, 2017. "Random graph models for dynamic networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(10), pages 1-14, October.
    27. Bindel, David & Kleinberg, Jon & Oren, Sigal, 2015. "How bad is forming your own opinion?," Games and Economic Behavior, Elsevier, vol. 92(C), pages 248-265.
    28. Li, Zhi & Zhan, Wentao & Xu, Liping, 2019. "Stochastic differential equations with time-dependent coefficients driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 530(C).
    29. Zhang, Kun & Wang, Jin, 2017. "Landscape and flux theory of non-equilibrium open economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 189-208.
    30. Xu, Liping, 2019. "Viability for stochastic functional differential equations with infinite memory driven by a fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moura, N.J. & Ribeiro, Marcelo B., 2013. "Testing the Goodwin growth-cycle macroeconomic dynamics in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2088-2103.
    2. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    3. A. O. Glekin & A. Lykov & K. L. Vaninsky, 2014. "On Simulation of Various Effects in Consolidated Order Book," Papers 1402.4150, arXiv.org.
    4. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    5. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2019. "A Statistical Field Approach to Capital Accumulation," Working Papers hal-02280634, HAL.
    6. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    7. Julius Bonart & Martin D. Gould, 2017. "Latency and liquidity provision in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1601-1616, October.
    8. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    9. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    10. Gosselin, Pierre & Lotz, Aïleen & Wambst, Marc, 2017. "A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents," MPRA Paper 79488, University Library of Munich, Germany.
    11. Nikolaos Th. Chatzarakis, 2021. "Revisiting the role and consequences of Econophysics from a Marxian perspective," Bulletin of Political Economy, Bulletin of Political Economy, vol. 15(1), pages 45-68, June.
    12. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2020. "A path integral approach to business cycle models with large number of agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 899-942, October.
    13. Martin Šmíd, 2016. "Estimation of zero-intelligence models by L1 data," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1423-1444, September.
    14. Salvador Pueyo, 2013. "Is it a power law distribution? The case of economic contractions," Papers 1310.2567, arXiv.org.
    15. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2021. "A statistical field approach to capital accumulation," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 817-908, October.
    16. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico, 2019. "Statistical properties of volume and calendar effects in prediction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1150-1160.
    17. Tu, Chengyi, 2014. "Cointegration-based financial networks study in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 245-254.
    18. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2018. "A Path Integral Approach to Business Cycle Models with Large Number of Agents," Working Papers hal-01893556, HAL.
    19. Kononovicius, Aleksejus & Ruseckas, Julius, 2019. "Order book model with herd behavior exhibiting long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 171-191.
    20. Ivan Jericevich & Murray McKechnie & Tim Gebbie, 2021. "Calibrating an adaptive Farmer-Joshi agent-based model for financial markets," Papers 2104.09863, arXiv.org.
    21. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s037843712100090x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.