IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i20p4564-4574.html
   My bibliography  Save this article

Stochastic differential equation derivation: Comparison of the Markov method versus the additive method

Author

Listed:
  • Galayda, S.
  • Barany, E.

Abstract

There are several methods of transforming an ordinary differential equation into a stochastic differential equation (SDE). The two most common are adding noise to a system parameter or variable and transforming to a SDE or deriving the SDE by assuming an underlying Markov process. Using simple one- and two-dimensional systems we investigate the differences in dynamics and bifurcations between SDE derived by each method from simple deterministic population models.

Suggested Citation

  • Galayda, S. & Barany, E., 2012. "Stochastic differential equation derivation: Comparison of the Markov method versus the additive method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4564-4574.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:20:p:4564-4574
    DOI: 10.1016/j.physa.2012.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112003998
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.05.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. IonuĊ£ Florescu & Maria Cristina Mariani & Granville Sewell, 2011. "Numerical solutions to an integro-differential parabolic problem arising in the pricing of financial options in a Levy market," Quantitative Finance, Taylor & Francis Journals, vol. 14(8), pages 1445-1452, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaidya, Tushar & Chotibut, Thiparat & Piliouras, Georgios, 2021. "Broken detailed balance and non-equilibrium dynamics in noisy social learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    2. Chen, Goong & Mariani, Maria Christina & SenGupta, Indranil & Mai, Nicholas, 2012. "Spectral analysis and generation of certain highly oscillatory curves related to chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1453-1468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:20:p:4564-4574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.