IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v405y2014icp104-113.html
   My bibliography  Save this article

Fokker–Planck type equations associated with fractional Brownian motion controlled by infinitely divisible processes

Author

Listed:
  • Gajda, Janusz
  • Wyłomańska, Agnieszka

Abstract

In this paper we study the anomalous diffusion process driven by fractional Brownian motion delayed by general infinitely divisible subordinator. We show the analyzed process is the stochastic representation of the Fokker–Planck type equation that describes the probability density function of an introduced model. Moreover, we study main characteristics of the examined process, the first two moments, that allow us in special cases for classification of it as a system with accelerating-subdiffusion property.

Suggested Citation

  • Gajda, Janusz & Wyłomańska, Agnieszka, 2014. "Fokker–Planck type equations associated with fractional Brownian motion controlled by infinitely divisible processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 104-113.
  • Handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:104-113
    DOI: 10.1016/j.physa.2014.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114002106
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    2. Wang, Lu & Zhang, Rong & Yang, Lin & Su, Yang & Ma, Feng, 2018. "Pricing geometric Asian rainbow options under fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 8-16.
    3. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    4. Vaidya, Tushar & Chotibut, Thiparat & Piliouras, Georgios, 2021. "Broken detailed balance and non-equilibrium dynamics in noisy social learning models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:104-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.