IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v567y2021ics0378437120309833.html
   My bibliography  Save this article

Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition

Author

Listed:
  • Liu, Cong
  • Tan, Bin
  • Fu, Mingyu
  • Li, Jinlian
  • Wang, Jun
  • Hou, Fengzhen
  • Yang, Albert

Abstract

Objective evaluation of sleep is crucial to recognize sleep disorders and take effective interventions accordingly. Due to the shortcomings of the conventional polysomnographic acquisition, an automatic sleep scoring method based on a single-channel electroencephalogram (EEG) is vital in sleep medicine practice. In this study, we proposed a data-driven and robust automatic sleep staging scheme based on a single-channel EEG. With the decomposition of the EEG epochs using Ensemble Empirical Mode Decomposition (EEMD), we extracted various features using statistical, time-domain and nonlinear dynamics characteristics from not only the original EEG signal but also the decomposed intrinsic mode functions (IMFs). A classification model with the eXtreme Gradient Boosting (XGBoost) algorithm was trained and tested using 5-fold cross-validation on three different databases, i.e., the Sleep-EDF database available at Physionet, the DREAMS Subjects database and the database of Sleep Heart Health Study (SHHS). The results demonstrated that the analysis of IMFs derived from EEMD could provide substantial supplement to the classification of EEG sleep stages. In the tasks of 4-class and 5-class sleep staging, the proposed method achieved an accuracy of 93.1% and 91.9% for the Sleep-EDF database, 86.4% and 83.4% for the DREAMS Subjects database, and 87.5% and 85.8% for the SHHS database, respectively. Furthermore, our observation that prefrontal EEG derivations should be optimal choices might evoke promising application of wearable EEG devices on sleep monitoring because EEG signals can be easily obtained using dry electrodes on the forehead. Additionally, the proposed method is computationally efficient and should be valuable in real-time sleep-scoring.

Suggested Citation

  • Liu, Cong & Tan, Bin & Fu, Mingyu & Li, Jinlian & Wang, Jun & Hou, Fengzhen & Yang, Albert, 2021. "Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
  • Handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309833
    DOI: 10.1016/j.physa.2020.125685
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120309833
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125685?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yung-Hung & Yeh, Chien-Hung & Young, Hsu-Wen Vincent & Hu, Kun & Lo, Men-Tzung, 2014. "On the computational complexity of the empirical mode decomposition algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 159-167.
    2. Albert C Yang & Jong-Ling Fuh & Norden E Huang & Ben-Chang Shia & Chung-Kang Peng & Shuu-Jiun Wang, 2011. "Temporal Associations between Weather and Headache: Analysis by Empirical Mode Decomposition," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Biao & Lv, Jia-Jun & Rui, Lin-Ge & Yang, Yu-Xuan & Chen, Yun-Gang & Ma, Chao & Gao, Zhong-Ke, 2021. "Seizure prediction in scalp EEG based channel attention dual-input convolutional neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongxiao Niu & Yi Liang & Wei-Chiang Hong, 2017. "Wind Speed Forecasting Based on EMD and GRNN Optimized by FOA," Energies, MDPI, vol. 10(12), pages 1-18, December.
    2. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    3. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Yeh, Chien-Hung & Lo, Men-Tzung & Hu, Kun, 2016. "Spurious cross-frequency amplitude–amplitude coupling in nonstationary, nonlinear signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 143-150.
    5. Qiang Gao & He-Sheng Tang & Jia-Wei Xiang & Yongteng Zhong, 2018. "A multi-sensor fault detection strategy for axial piston pump using the Walsh transform method," International Journal of Distributed Sensor Networks, , vol. 14(4), pages 15501477187, April.
    6. Wang, Yung-Hung & Young, Hsu-Wen Vincent & Lo, Men-Tzung, 2016. "The inner structure of empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1003-1017.
    7. Muszkats, J.P. & Muszkats, S.R. & Zitto, M.E. & Piotrkowski, R., 2024. "A statistical analysis of causal decomposition methods applied to Earth system time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    8. Jujie Wang & Yanfeng Wang & Yaning Li, 2018. "A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction," Energies, MDPI, vol. 11(2), pages 1-33, February.
    9. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing & Guo, Haixiang, 2017. "Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm," Applied Energy, Elsevier, vol. 190(C), pages 390-407.
    10. Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
    11. Young, Hsu-Wen Vincent & Hsu, Ke-Hsin & Pham, Van-Truong & Tran, Thi-Thao & Lo, Men-Tzung, 2017. "A new approach to sparse decomposition of nonstationary signals with multiple scale structures using self-consistent nonlinear waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 1-10.
    12. Owczarek Małgorzata & Tomczyk Arkadiusz M., 2022. "Impact of Atmospheric Circulation on the Occurrence of Very Strong and Extreme Cold Stress in Poland," Quaestiones Geographicae, Sciendo, vol. 41(3), pages 111-126, September.
    13. Wei Sun & Ming Duan, 2019. "Analysis and Forecasting of the Carbon Price in China’s Regional Carbon Markets Based on Fast Ensemble Empirical Mode Decomposition, Phase Space Reconstruction, and an Improved Extreme Learning Machin," Energies, MDPI, vol. 12(2), pages 1-27, January.
    14. Weifang Zhu & Heming Zhao & Dehui Xiang & Xinjian Chen, 2013. "A Flattest Constrained Envelope Approach for Empirical Mode Decomposition," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-12, April.
    15. Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
    16. Liu, Hui & Tian, Hongqi & Liang, Xifeng & Li, Yanfei, 2015. "New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 83(C), pages 1066-1075.
    17. Dong, Shuoxuan & Zhou, Yang & Chen, Tianyi & Li, Shen & Gao, Qiantong & Ran, Bin, 2021. "An integrated Empirical Mode Decomposition and Butterworth filter based vehicle trajectory reconstruction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    18. Xiao, Liye & Shao, Wei & Yu, Mengxia & Ma, Jing & Jin, Congjun, 2017. "Research and application of a combined model based on multi-objective optimization for electrical load forecasting," Energy, Elsevier, vol. 119(C), pages 1057-1074.
    19. Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
    20. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2019. "A Review on Hybrid Empirical Mode Decomposition Models for Wind Speed and Wind Power Prediction," Energies, MDPI, vol. 12(2), pages 1-42, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.