IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v584y2021ics037843712100649x.html
   My bibliography  Save this article

Seizure prediction in scalp EEG based channel attention dual-input convolutional neural network

Author

Listed:
  • Sun, Biao
  • Lv, Jia-Jun
  • Rui, Lin-Ge
  • Yang, Yu-Xuan
  • Chen, Yun-Gang
  • Ma, Chao
  • Gao, Zhong-Ke

Abstract

Epilepsy is one of the most common brain diseases, and seizures usually occur randomly. Accurately predicting seizures enable doctors and patients to carry out medical prevention timely. In seizure prediction studies, single-domain information input (time domain or frequency domain, Etc.) neglects some parts’ information from signals. In this paper, we propose a novel deep learning framework named channel attention dual-input convolutional neural network (CADCNN) to obtain the signal’s useful information fully. The spatial–temporal features extracted by short-time Fourier transform (STFT) are fed to the CADCNN, and the raw EEG signals are fed for further feature extraction. With the fusion of two inputs from different domains and the combination of channel attention, CADCNN can learn faithful and distinguishable representations of EEG signals and boost the temporal, spectrum, and spatial information utilization capability. We evaluate the proposed method using the Boston Children’s Hospital-MIT scalp EEG public datasets. Compared with other state-of-the-art methods, the sensitivity, false prediction rate, specificity, and AUC of our proposed method reach 97.1%, 0.029h, 95.6%, and 0.917, respectively, presenting better performance and higher prediction accuracy.

Suggested Citation

  • Sun, Biao & Lv, Jia-Jun & Rui, Lin-Ge & Yang, Yu-Xuan & Chen, Yun-Gang & Ma, Chao & Gao, Zhong-Ke, 2021. "Seizure prediction in scalp EEG based channel attention dual-input convolutional neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
  • Handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s037843712100649x
    DOI: 10.1016/j.physa.2021.126376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712100649X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Cong & Tan, Bin & Fu, Mingyu & Li, Jinlian & Wang, Jun & Hou, Fengzhen & Yang, Albert, 2021. "Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    2. Yang, Chuanzuo & Luan, Guoming & Liu, Zhao & Wang, Qingyun, 2019. "Dynamical analysis of epileptic characteristics based on recurrence quantification of SEEG recordings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 507-515.
    3. Grubov, V.V. & Sitnikova, E. & Pavlov, A.N. & Koronovskii, A.A. & Hramov, A.E., 2017. "Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 206-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:584:y:2021:i:c:s037843712100649x. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.