IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v645y2024ics0378437124003480.html
   My bibliography  Save this article

The applicability of positive information in negative opinion management: An attitude-laden communication perspective

Author

Listed:
  • Ding, Haixin
  • Xie, Li

Abstract

Emergencies are often accompanied by negative public opinion or even public opinion crises. To effectively deal with emergencies, negative opinion management should not be ignored; positive information seems to be a natural opinion control strategy, but its nature and applicability remain to be explored. Based on social judgment theory, the possible negative influence and the applicability of positive information are exposed conceptually. From an attitude-laden communication perspective, opinion evolution with mass communication is modeled. A Java-based Agent-based Modeling approach is applied to conduct extensive simulation experiments. Experiment data-based results indicate that both communication and attitude aspects of positive information are essential, and the strategy has its conditional applicability: under some conditions, the strategy is usually able to effectively achieve its expected effects; under other situations, it may not meet the expectation, or may even produce obviously negative effects; and non-positive information strategies and non-intervention are also management options.

Suggested Citation

  • Ding, Haixin & Xie, Li, 2024. "The applicability of positive information in negative opinion management: An attitude-laden communication perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
  • Handle: RePEc:eee:phsmap:v:645:y:2024:i:c:s0378437124003480
    DOI: 10.1016/j.physa.2024.129839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124003480
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Rand & Christian Stummer, 2021. "Agent‐based modeling of new product market diffusion: an overview of strengths and criticisms," Annals of Operations Research, Springer, vol. 305(1), pages 425-447, October.
    2. Zhu, Jiefan & Yao, Yiping & Tang, Wenjie & Zhang, Haoming, 2022. "An agent-based model of opinion dynamics with attitude-hiding behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    4. Zhongtian Chen & Hanlin Lan, 2021. "Dynamics of Public Opinion: Diverse Media and Audiences’ Choices," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(2), pages 1-8.
    5. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
    6. Cheng, Yingying & Huo, Liang'an & Zhao, Laijun, 2022. "Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    8. Fan, Kangqi & Pedrycz, Witold, 2017. "Evolution of public opinions in closed societies influenced by broadcast media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 53-66.
    9. Luo, Yun & Li, Yuke & Sun, Chudi & Cheng, Chun, 2022. "Adapted Deffuant–Weisbuch model with implicit and explicit opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    10. A. Negahban & J.S. Smith, 2016. "The effect of supply and demand uncertainties on the optimal production and sales plans for new products," International Journal of Production Research, Taylor & Francis Journals, vol. 54(13), pages 3852-3869, July.
    11. Askarizadeh, Mojgan & Tork Ladani, Behrouz & Manshaei, Mohammad Hossein, 2019. "An evolutionary game model for analysis of rumor propagation and control in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 21-39.
    12. Fan, Kangqi & Pedrycz, Witold, 2015. "Emergence and spread of extremist opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 87-97.
    13. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    14. Li, Tingyu & Zhu, Hengmin, 2020. "Effect of the media on the opinion dynamics in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    15. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    16. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    17. Zhang, Jing & Wang, Xiaoli & Xie, Yanxi & Wang, Meihua, 2022. "Research on multi-topic network public opinion propagation model with time delay in emergencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    18. Tuan Q. Phan & David Godes, 2018. "The Evolution of Influence Through Endogenous Link Formation," Marketing Science, INFORMS, vol. 37(2), pages 259-278, March.
    19. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    20. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    21. Geng, Lixiao & Zheng, Hongye & Qiao, Gaigai & Geng, Lisha & Wang, Ke, 2023. "Online public opinion dissemination model and simulation under media intervention from different perspectives," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    22. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    23. Jin, Cheng & Li, Yifu & Jin, Xiaogang, 2017. "Political opinion formation: Initial opinion distribution and individual heterogeneity of tolerance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 257-266.
    24. Isham, Valerie & Harden, Simon & Nekovee, Maziar, 2010. "Stochastic epidemics and rumours on finite random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 561-576.
    25. Pineda, M. & Buendía, G.M., 2015. "Mass media and heterogeneous bounds of confidence in continuous opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 73-84.
    26. Wu, Yue & Li, Linjiao & Yu, Qiannan & Gan, Jiaxin & Zhang, Yi, 2023. "Strategies for reducing polarization in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    27. Chen, Shuwei & Glass, David H. & McCartney, Mark, 2016. "Characteristics of successful opinion leaders in a bounded confidence model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 426-436.
    28. Yang, Anzhi & Huang, Xianying & Cai, Xiumei & Zhu, Xiaofei & Lu, Ling, 2019. "ILSR rumor spreading model with degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    29. Jiang, Guoyin & Li, Saipeng & Li, Minglei, 2020. "Dynamic rumor spreading of public opinion reversal on Weibo based on a two-stage SPNR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    30. Miguel Pineda & Raúl Toral & Emilio Hernández-García, 2013. "The noisy Hegselmann-Krause model for opinion dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(12), pages 1-10, December.
    31. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    32. Bowen Li & Hua Li & Qiubai Sun & Rongjian Lv & Jianbo Zhao & M. De Aguiar, 2022. "Evolutionary Game Analysis of the Dissemination of False Information by Multiple Parties after Major Emergencies," Complexity, Hindawi, vol. 2022, pages 1-14, April.
    33. S. Huet & G. Deffuant & W. Jager, 2008. "A Rejection Mechanism In 2d Bounded Confidence Provides More Conformity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 529-549.
    34. Alatas, Husin & Nurhimawan, Salamet & Asmat, Fikri & Hardhienata, Hendradi, 2017. "Dynamics of an agent-based opinion model with complete social connectivity network," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 24-32.
    35. Nejad, Mohammad G. & Amini, Mehdi & Sherrell, Daniel L., 2016. "The profit impact of revenue heterogeneity and assortativity in the presence of negative word-of-mouth," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 656-673.
    36. Jin Li & Renbin Xiao, 2017. "Agent-Based Modelling Approach for Multidimensional Opinion Polarization in Collective Behaviour," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(2), pages 1-4.
    37. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    38. Pedraza, Lucía & Pinasco, Juan Pablo & Saintier, Nicolas & Balenzuela, Pablo, 2021. "An analytical formulation for multidimensional continuous opinion models," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    39. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    40. Crokidakis, Nuno, 2012. "Effects of mass media on opinion spreading in the Sznajd sociophysics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1729-1734.
    41. Hou, Jian & Li, Wenshan & Jiang, Mingyue, 2021. "Opinion dynamics in modified expressed and private model with bounded confidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    42. Shen, Han & Tu, Lilan & Guo, Yifei & Chen, Juan, 2022. "The influence of cross-platform and spread sources on emotional information spreading in the 2E-SIR two-layer network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    43. Chau, H.F. & Wong, C.Y. & Chow, F.K. & Fung, Chi-Hang Fred, 2014. "Social judgment theory based model on opinion formation, polarization and evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 133-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    2. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Ghezelbash, Ehsan & Yazdanpanah, Mohammad Javad & Asadpour, Masoud, 2019. "Polarization in cooperative networks through optimal placement of informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. Evangelos Ioannidis & Nikos Varsakelis & Ioannis Antoniou, 2020. "Promoters versus Adversaries of Change: Agent-Based Modeling of Organizational Conflict in Co-Evolving Networks," Mathematics, MDPI, vol. 8(12), pages 1-25, December.
    5. Hu, Haibo & Chen, Wenhao & Hu, Yixuan, 2024. "Opinion dynamics in social networks under the influence of mass media," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    6. Han, Wenchen & Gao, Shun & Huang, Changwei & Yang, Junzhong, 2022. "Non-consensus states in circular opinion model with repulsive interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    7. Huang, Changwei & Hou, Yongzhao & Han, Wenchen, 2023. "Coevolution of consensus and cooperation in evolutionary Hegselmann–Krause dilemma with the cooperation cost," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Ashkan Negahban & Jeffrey S. Smith, 2018. "A joint analysis of production and seeding strategies for new products: an agent-based simulation approach," Annals of Operations Research, Springer, vol. 268(1), pages 41-62, September.
    9. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    10. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    11. Li, Tingyu & Zhu, Hengmin, 2020. "Effect of the media on the opinion dynamics in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    12. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    13. Low, Nicholas Kah Yean & Melatos, Andrew, 2022. "Vacillating about media bias: Changing one’s mind intermittently within a network of political allies and opponents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    14. Xiao, Yu & Liu, Liangliang, 2024. "How does information competition affect new product diffusion? Insights from computational experiments," Journal of Business Research, Elsevier, vol. 183(C).
    15. Shen, Han & Tu, Lilan & Wang, Xianjia, 2024. "The influence of emotional tendency on the dissemination and evolution of opinions in two-layer social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    16. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    17. Shang, Yilun, 2018. "Hybrid consensus for averager–copier–voter networks with non-rational agents," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 244-251.
    18. Xi Chen & Xiao Zhang & Yong Xie & Wei Li, 2017. "Opinion Dynamics of Social-Similarity-Based Hegselmann–Krause Model," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    19. Nejad, Mohammad G. & Amini, Mehdi, 2024. "Designing profitable seeding Programs: The effects of social network properties and consumer homophily," Journal of Business Research, Elsevier, vol. 173(C).
    20. Zhongtian Chen & Hanlin Lan, 2021. "Dynamics of Public Opinion: Diverse Media and Audiences’ Choices," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(2), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:645:y:2024:i:c:s0378437124003480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.