IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2018-115-2.html
   My bibliography  Save this article

Learning Opinions by Observing Actions: Simulation of Opinion Dynamics Using an Action-Opinion Inference Model

Author

Abstract

Opinion dynamics models are based on the implicit assumption that people can observe the opinions of others directly, and update their own opinions based on the observation. This assumption significantly reduces the complexity of the process of learning opinions, but seems to be rather unrealistic. Instead, we argue that the opinion itself is unobservable, and that people attempt to infer the opinions of others by observing and interpreting their actions. Building on the notion of Bayesian learning, we introduce an action-opinion inference model (AOI model); this model describes and predicts opinion dynamics where actions are governed by underlying opinions, and each agent changes her opinion according to her inference of others’ opinions from their actions. We study different action-opinion relations in the framework of the AOI model, and show how opinion dynamics are determined by the relations between opinions and actions. We also show that the well-known voter model can be formulated as being a special case of the AOI model when adopting a bijective action-opinion relation. Furthermore, we show that a so-called inclusive opinion, which is congruent with more than one action (in contrast with an exclusive opinion which is only congruent with one action), plays a special role in the dynamic process of opinion spreading. Specifically, the system containing an inclusive opinion always ends up with a full consensus of an exclusive opinion that is incompatible with the inclusive opinion, or with a mixed state of other opinions, including the inclusive opinion itself. A mathematical solution is given for some simple action-opinion relations to help better understand and interpret the simulation results. Finally, the AOI model is compared with the constrained voter model and the language competition model; several avenues for further research are discussed at the end of the paper.

Suggested Citation

  • Tanzhe Tang & Caspar G. Chorus, 2019. "Learning Opinions by Observing Actions: Simulation of Opinion Dynamics Using an Action-Opinion Inference Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(3), pages 1-2.
  • Handle: RePEc:jas:jasssj:2018-115-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/22/3/2/2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hadzibeganovic, T. & Stauffer, D. & Schulze, C., 2008. "Boundary effects in a three-state modified voter model for languages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3242-3252.
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    3. Andreas Flache & Michael Mäs & Thomas Feliciani & Edmund Chattoe-Brown & Guillaume Deffuant & Sylvie Huet & Jan Lorenz, 2017. "Models of Social Influence: Towards the Next Frontiers," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(4), pages 1-2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    2. Katsuma Mitsutsuji & Susumu Yamakage, 2020. "The dual attitudinal dynamics of public opinion: an agent-based reformulation of L. F. Richardson’s war-moods model," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 439-461, April.
    3. Manca, Francesco & Sivakumar, Aruna & Daina, Nicolò & Axsen, Jonn & Polak, John W, 2020. "Modelling the influence of peers’ attitudes on choice behaviour: Theory and empirical application on electric vehicle preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 278-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    2. Schweitzer, Frank, 2021. "Social percolation revisited: From 2d lattices to adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    3. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    4. Lipiecki, Arkadiusz & Sznajd-Weron, Katarzyna, 2022. "Polarization in the three-state q-voter model with anticonformity and bounded confidence," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    5. Deffuant, Guillaume & Roubin, Thibaut, 2023. "Emergence of group hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    6. Sylvie Huet & Jean-Denis Mathias, 2018. "Few Self-Involved Agents Among Bounded Confidence Agents Can Change Norms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-27, September.
    7. Deffuant, Guillaume & Roubin, Thibaut, 2022. "Do interactions among unequal agents undermine those of low status?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    8. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    9. Polanski, Arnold & Vega-Redondo, Fernando, 2023. "Homophily and influence," Journal of Economic Theory, Elsevier, vol. 207(C).
    10. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Andreas Flache, 2018. "About Renegades And Outgroup Haters: Modeling The Link Between Social Influence And Intergroup Attitudes," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-32, September.
    12. Ambrosius, Floor H.W. & Kramer, Mark R. & Spiegel, Alisa & Bokkers, Eddie A.M. & Bock, Bettina B. & Hofstede, Gert Jan, 2022. "Diffusion of organic farming among Dutch pig farmers: An agent-based model," Agricultural Systems, Elsevier, vol. 197(C).
    13. Bruce Edmonds, 2020. "Co-developing beliefs and social influence networks—towards understanding socio-cognitive processes like Brexit," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 491-515, April.
    14. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    15. Kozitsin, Ivan V., 2024. "Optimal control in opinion dynamics models: diversity of influence mechanisms and complex influence hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Christian Ganser & Marc Keuschnigg, 2018. "Social Influence Strengthens Crowd Wisdom Under Voting," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-23, September.
    17. Luo, Yun & Li, Yuke & Sun, Chudi & Cheng, Chun, 2022. "Adapted Deffuant–Weisbuch model with implicit and explicit opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Marijn A. Keijzer & Michael Mäs & Andreas Flache, 2018. "Communication in Online Social Networks Fosters Cultural Isolation," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    19. Jan Lorenz & Martin Neumann, 2018. "Opinion Dynamics And Collective Decisions," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-9, September.
    20. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2018-115-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.