IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010877.html
   My bibliography  Save this article

Dynamics of an information theoretic analog of two masses on a spring

Author

Listed:
  • Goehle, Geoff
  • Griffin, Christopher

Abstract

In this short communication we investigate an information theoretic analogue of the classic two masses on spring system, arising from a physical interpretation of Friston’s free energy principle in the theory of learning in a system of agents. Using methods from classical mechanics on manifolds, we define a kinetic energy term using the Fisher metric on distributions and a potential energy function defined in terms of stress on the agents’ beliefs. The resulting Lagrangian (Hamiltonian) produces a variation of the classic DeGroot dynamics. In the two agent case, the potential function is defined using the Jeffrey’s divergence and the resulting dynamics are characterized by a non-linear spring. These dynamics produce trajectories that resemble flows on tori but are shown numerically to produce chaos near the boundary of the space. We then investigate persuasion as an information theoretic control problem where analysis indicates that manipulating peer pressure with a fixed target is a more stable approach to altering an agent’s belief than providing a slowly changing belief state that approaches the target.

Suggested Citation

  • Goehle, Geoff & Griffin, Christopher, 2024. "Dynamics of an information theoretic analog of two masses on a spring," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010877
    DOI: 10.1016/j.chaos.2024.115535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Glass, Catherine A. & Glass, David H., 2021. "Opinion dynamics of social learning with a conflicting source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    4. Yuri Sachkov, 2022. "Optimal Control Problem," Springer Optimization and Its Applications, in: Introduction to Geometric Control, chapter 0, pages 47-79, Springer.
    5. Griffin, Christopher & Squicciarini, Anna & Jia, Feiran, 2022. "Consensus in complex networks with noisy agents and peer pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    6. Goehle, Geoff & Griffin, Christopher, 2024. "Free entropy minimizing persuasion in a predictor–corrector dynamic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    7. Gomez, Ignacio S. & Portesi, Mariela & Borges, Ernesto P., 2020. "Universality classes for the Fisher metric derived from relative group entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    8. Yuri Sachkov, 2022. "Solution to Optimal Control Problems," Springer Optimization and Its Applications, in: Introduction to Geometric Control, chapter 0, pages 81-144, Springer.
    9. Griffin, Christopher & Semonsen, Justin & Belmonte, Andrew, 2022. "Generalized Hamiltonian dynamics and chaos in evolutionary games on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    10. Weisbuch, Gérard & Deffuant, Guillaume & Amblard, Frédéric, 2005. "Persuasion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 555-575.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goehle, Geoff & Griffin, Christopher, 2024. "Free entropy minimizing persuasion in a predictor–corrector dynamic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    2. Griffin, Christopher & Squicciarini, Anna & Jia, Feiran, 2022. "Consensus in complex networks with noisy agents and peer pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Gabbay, Michael, 2007. "The effects of nonlinear interactions and network structure in small group opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 118-126.
    4. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    5. Pedraza, Lucía & Pinasco, Juan Pablo & Saintier, Nicolas & Balenzuela, Pablo, 2021. "An analytical formulation for multidimensional continuous opinion models," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    7. Hendrickx, Julien M., 2008. "Order preservation in a generalized version of Krause’s opinion dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5255-5262.
    8. Shen, Han & Tu, Lilan & Wang, Xianjia, 2024. "The influence of emotional tendency on the dissemination and evolution of opinions in two-layer social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    9. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    10. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    11. Chen, Shuwei & Glass, David H. & McCartney, Mark, 2016. "Characteristics of successful opinion leaders in a bounded confidence model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 426-436.
    12. Kułakowski, Krzysztof, 2009. "Opinion polarization in the Receipt–Accept–Sample model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 469-476.
    13. Ding, Haixin & Xie, Li, 2024. "The applicability of positive information in negative opinion management: An attitude-laden communication perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    14. Laurent Salzarulo, 2006. "A Continuous Opinion Dynamics Model Based on the Principle of Meta-Contrast," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-13.
    15. Liang, Haili & Yang, Yiping & Wang, Xiaofan, 2013. "Opinion dynamics in networks with heterogeneous confidence and influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2248-2256.
    16. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    17. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    18. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    19. Thomas Moore & Patrick Finley & Nancy Brodsky & Theresa Brown & Benjamin Apelberg & Bridget Ambrose & Robert Glass, 2015. "Modeling Education and Advertising with Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-7.
    20. George Butler & Gabriella Pigozzi & Juliette Rouchier, 2019. "Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Making," Complexity, Hindawi, vol. 2019, pages 1-31, August.

    More about this item

    Keywords

    Information geometry;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.