IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0612084.html
   My bibliography  Save this paper

Volatility: a hidden Markov process in financial time series

Author

Listed:
  • Zoltan Eisler
  • Josep Perello
  • Jaume Masoliver

Abstract

The volatility characterizes the amplitude of price return fluctuations. It is a central magnitude in finance closely related to the risk of holding a certain asset. Despite its popularity on trading floors, the volatility is unobservable and only the price is known. Diffusion theory has many common points with the research on volatility, the key of the analogy being that volatility is the time-dependent diffusion coefficient of the random walk for the price return. We present a formal procedure to extract volatility from price data, by assuming that it is described by a hidden Markov process which together with the price form a two-dimensional diffusion process. We derive a maximum likelihood estimate valid for a wide class of two-dimensional diffusion processes. The choice of the exponential Ornstein-Uhlenbeck (expOU) stochastic volatility model performs remarkably well in inferring the hidden state of volatility. The formalism is applied to the Dow Jones index. The main results are: (i) the distribution of estimated volatility is lognormal, which is consistent with the expOU model; (ii) the estimated volatility is related to trading volume by a power law of the form $\sigma \propto V^{0.55}$; and (iii) future returns are proportional to the current volatility which suggests some degree of predictability for the size of future returns.

Suggested Citation

  • Zoltan Eisler & Josep Perello & Jaume Masoliver, 2006. "Volatility: a hidden Markov process in financial time series," Papers physics/0612084, arXiv.org, revised Jul 2007.
  • Handle: RePEc:arx:papers:physics/0612084
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0612084
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cyrille Dubarry & Randal Douc, 2014. "Calibrating the exponential Ornstein--Uhlenbeck multiscale stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 443-456, March.
    2. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0612084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.