IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304951.html
   My bibliography  Save this article

Study on the optimal stochastic resonance of different bistable potential models based on output saturation characteristic and application

Author

Listed:
  • Li, Mengdi
  • Shi, Peiming
  • Zhang, Wenyue
  • Han, Dongying

Abstract

Stochastic resonance (SR) is a kind of physical phenomenon that makes use of noise energy to enhance the signal, but the problem of output saturation generally exists in classcial bistable stochastic resonance (CBSR). To overcome this shortcoming, a few unsaturation models have been established. In view of this, the present study is committed to analyzing and comparing the unsaturation ability of different models more systematically and comprehensively. Firstly, several new piecewise bistable potential models are constructed to supplement the existing unsaturation models and their unsaturation is proved. Then, the higher output signal-to-noise ratio (SNR) of simulated signals shows that the models with linear sides have better unsaturation characteristic and frequency adaptability. Finally, the output SNR and amplitude are chosen as the comprehensive index for evaluating the enhancement performance. Each mod el is applied to process analog and fault signals. The results show that unsaturation capability of piecewise linear bistable stochastic resonance system is best, which is demonstrated again from the optimal output SNR of particle swarm optimization (PSO) algorithm.

Suggested Citation

  • Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2020. "Study on the optimal stochastic resonance of different bistable potential models based on output saturation characteristic and application," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304951
    DOI: 10.1016/j.chaos.2020.110098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Kang-Kang & Ju, Lin & Wang, Ya-Jun & Li, Sheng-Hong, 2018. "Impact of colored cross-correlated non-Gaussian and Gaussian noises on stochastic resonance and stochastic stability for a metapopulation system driven by a multiplicative signal," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 166-181.
    2. M. Gosak & M. Perc & S. Kralj, 2011. "Stochastic resonance in a locally excited system of bistable oscillators," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 80(4), pages 519-528, April.
    3. Li, Jimeng & Chen, Xuefeng & Du, Zhaohui & Fang, Zuowei & He, Zhengjia, 2013. "A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis," Renewable Energy, Elsevier, vol. 60(C), pages 7-19.
    4. Wang, Can-Jun & Yang, Ke-Li & Du, Chun-Yan, 2017. "Multiple cross-correlation noise induced transition in a stochastic bistable system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 261-274.
    5. Shi, Peiming & Xia, Haifeng & Han, Dongying & Fu, Rongrong & Yuan, Danzhen, 2018. "Stochastic resonance in a time polo-delayed asymmetry bistable system driven by multiplicative white noise and additive color noise," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 8-14.
    6. Shi, Peiming & Zhang, Wenyue & Han, Dongying & Li, Mengdi, 2019. "Stochastic resonance in a high-order time-delayed feedback tristable dynamic system and its application," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 155-166.
    7. Zhang, Chun & Du, Liping & Wang, Tonghuan & Yang, Tao & Zeng, Chunhua & Wang, Canjun, 2017. "Impact of time delay in a stochastic gene regulation network," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 120-129.
    8. Wang, Kang-Kang & Wang, Ya-Jun & Li, Sheng-Hong & Wu, Jian-Cheng, 2017. "Double time-delays induced stochastic dynamical characteristics for a metapopulation system subjected to the associated noises and a multiplicative periodic signal," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 400-417.
    9. Mobayen, Saleh & Ma, Jun, 2018. "Robust finite-time composite nonlinear feedback control for synchronization of uncertain chaotic systems with nonlinearity and time-delay," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 46-54.
    10. Guo, Feng, 2009. "Stochastic resonance in a bias monostable system with frequency mixing force and multiplicative and additive noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2315-2320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jimeng & Cheng, Xing & Peng, Junling & Meng, Zong, 2022. "A new adaptive parallel resonance system based on cascaded feedback model of vibrational resonance and stochastic resonance and its application in fault detection of rolling bearings," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2021. "A novel underdamped continuous unsaturation bistable stochastic resonance method and its application," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Peiming & Zhang, Wenyue & Han, Dongying & Li, Mengdi, 2019. "Stochastic resonance in a high-order time-delayed feedback tristable dynamic system and its application," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 155-166.
    2. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    4. Zhang, Dongjian & Ma, Qihua & Dong, Hailiang & Liao, He & Liu, Xiangyu & Zha, Yibin & Zhang, Xiaoxiao & Qian, Xiaomin & Liu, Jin & Gan, Xuehui, 2023. "Time-delayed feedback bistable stochastic resonance system and its application in the estimation of the Polyester Filament Yarn tension in the spinning process," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Liu, Jian & Cao, Jie & Wang, Youguo & Hu, Bing, 2019. "Asymmetric stochastic resonance in a bistable system driven by non-Gaussian colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 321-336.
    6. Bi, Haohao & Lei, Youming & Han, Yanyan, 2019. "Stochastic resonance across bifurcations in an asymmetric system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1296-1312.
    7. Qiao, Zijian & Shu, Xuedao, 2021. "Coupled neurons with multi-objective optimization benefit incipient fault identification of machinery," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    9. Chun Zhang & Tao Yang & Shi-Xian Qu, 2021. "Impact of time delays and environmental noise on the extinction of a population dynamics model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-16, November.
    10. Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
    11. Xu, Pengfei & Gong, Xulu & Wang, Haotian & Li, Yiwei & Liu, Di, 2023. "A study of stochastic resonance in tri-stable generalized Langevin system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    12. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    13. Teng, Wei & Ding, Xian & Zhang, Xiaolong & Liu, Yibing & Ma, Zhiyong, 2016. "Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform," Renewable Energy, Elsevier, vol. 93(C), pages 591-598.
    14. Yuanlin Ma & Xingwang Yu, 2022. "Stationary Probability Density Analysis for the Randomly Forced Phytoplankton–Zooplankton Model with Correlated Colored Noises," Mathematics, MDPI, vol. 10(14), pages 1-11, July.
    15. Harshavarthini, S. & Sakthivel, R. & Kong, F., 2020. "Finite-time synchronization of chaotic coronary artery system with input time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    16. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    17. Ma, Tianchi & Shen, Junxian & Song, Di & Xu, Feiyun, 2022. "Unsaturated piecewise bistable stochastic resonance with three kinds of asymmetries driven by multiplicative and additive noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    18. Zhang, Hongxia & Han, Ping & Guo, Qin, 2023. "Stability and jumping dynamics of a stochastic vegetation ecosystem induced by threshold policy control," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    19. Gui, Rong & Li, Jiaxin & Yao, Yuangen & Cheng, Guanghui, 2021. "Effect of time-delayed feedback in a bistable system inferred by logic operation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    20. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.