IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v551y2020ics0378437119322393.html
   My bibliography  Save this article

Fast Super-Paramagnetic Clustering

Author

Listed:
  • Yelibi, Lionel
  • Gebbie, Tim

Abstract

We map stock market interactions to spin models to recover their hierarchical structure using a simulated annealing based Super-Paramagnetic Clustering (SPC) algorithm. This is directly compared to a modified implementation of a maximum likelihood approach we call fast Super-Paramagnetic Clustering (f-SPC). The methods are first applied to standard toy test-case problems, and then to a data-set of 447 stocks traded on the New York Stock Exchange (NYSE) over 1249 days. The signal to noise ratio of stock market correlation matrices is briefly considered. Our result recover approximately clusters representative of standard economic sectors and mixed ones whose dynamics shine light on the adaptive nature of financial markets and raise concerns relating to the effectiveness of industry based static financial market classification in the world of real-time data analytics. A key result is that we show that f-SPC maximum likelihood solutions converge to ones found within the Super-Paramagnetic Phase where the entropy is maximum, and those solutions are qualitatively better for high dimensionality data-sets.

Suggested Citation

  • Yelibi, Lionel & Gebbie, Tim, 2020. "Fast Super-Paramagnetic Clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
  • Handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437119322393
    DOI: 10.1016/j.physa.2019.124049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119322393
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.124049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. D. Hendricks & T. Gebbie & D. Wilcox, 2016. "Detecting intraday financial market states using temporal clustering," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1657-1678, November.
    3. Diane Wilcox & Tim Gebbie, 2014. "Hierarchical causality in financial economics," Papers 1408.5585, arXiv.org, revised Sep 2014.
    4. Matteo Marsili, 2002. "Dissecting financial markets: Sectors and states," Papers cond-mat/0207156, arXiv.org.
    5. Matteo Marsili, 2002. "Dissecting financial markets: sectors and states," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 297-302.
    6. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    7. Giada, Lorenzo & Marsili, Matteo, 2002. "Algorithms of maximum likelihood data clustering with applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 315(3), pages 650-664.
    8. Wilcox, Diane & Gebbie, Tim, 2007. "An analysis of cross-correlations in an emerging market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 584-598.
    9. Getz, G. & Levine, E. & Domany, E. & Zhang, M.Q., 2000. "Super-paramagnetic clustering of yeast gene expression profiles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 279(1), pages 457-464.
    10. Kullmann, L & Kertész, J & Mantegna, R.N, 2000. "Identification of clusters of companies in stock indices via Potts super-paramagnetic transitions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 412-419.
    11. Al-Futaisi, Ahmed & Patzek, Tadeusz W, 2003. "Extension of Hoshen–Kopelman algorithm to non-lattice environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 665-678.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Tanya Ara'ujo & Francisco Louc{c}~a, 2005. "The Geometry of Crashes - A Measure of the Dynamics of Stock Market Crises," Papers physics/0506137, arXiv.org, revised Jul 2005.
    3. Tanya Araujo & Francisco Louca, 2007. "The geometry of crashes. A measure of the dynamics of stock market crises," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 63-74.
    4. Dieter Hendricks & Tim Gebbie & Diane Wilcox, 2015. "Detecting intraday financial market states using temporal clustering," Papers 1508.04900, arXiv.org, revised Feb 2017.
    5. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    6. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    7. George Barnes & Sanjaye Ramgoolam & Michael Stephanou, 2023. "Permutation invariant Gaussian matrix models for financial correlation matrices," Papers 2306.04569, arXiv.org.
    8. Bolgorian, Meysam & Raei, Reza, 2010. "Convergence of fundamentalists and chartists’ expectations: An alarm for stock market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3822-3827.
    9. Musciotto, F. & Marotta, L. & Miccichè, S. & Mantegna, R.N., 2018. "Bootstrap validation of links of a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1032-1043.
    10. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    11. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    12. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    13. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2022. "Levels of structural change," Journal of Evolutionary Economics, Springer, vol. 32(1), pages 35-86, January.
    14. Damien Challet & Tobias Galla, 2005. "Price return autocorrelation and predictability in agent-based models of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 569-576.
    15. Mario L'opez P'erez & Ricardo Mansilla, 2021. "Ordinal Synchronization and Typical States in High-Frequency Digital Markets," Papers 2110.07047, arXiv.org, revised Mar 2022.
    16. Majapa, Mohamed & Gossel, Sean Joss, 2016. "Topology of the South African stock market network across the 2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 35-47.
    17. Challet, Damien, 2008. "Inter-pattern speculation: Beyond minority, majority and $-games," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 85-100, January.
    18. Christian Bongiorno & Damien Challet, 2020. "Nonparametric sign prediction of high-dimensional correlation matrix coefficients," Papers 2001.11214, arXiv.org.
    19. Desislava Chetalova & Rudi Schafer & Thomas Guhr, 2014. "Zooming into market states," Papers 1406.5386, arXiv.org.
    20. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437119322393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.