IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v279y2000i1p457-464.html
   My bibliography  Save this article

Super-paramagnetic clustering of yeast gene expression profiles

Author

Listed:
  • Getz, G.
  • Levine, E.
  • Domany, E.
  • Zhang, M.Q.

Abstract

High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, super-paramagnetic clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

Suggested Citation

  • Getz, G. & Levine, E. & Domany, E. & Zhang, M.Q., 2000. "Super-paramagnetic clustering of yeast gene expression profiles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 279(1), pages 457-464.
  • Handle: RePEc:eee:phsmap:v:279:y:2000:i:1:p:457-464
    DOI: 10.1016/S0378-4371(99)00524-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437199005245
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(99)00524-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Arruda, Guilherme F. & Costa, Luciano da Fontoura & Rodrigues, Francisco A., 2012. "A complex networks approach for data clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6174-6183.
    2. Yelibi, Lionel & Gebbie, Tim, 2020. "Fast Super-Paramagnetic Clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:279:y:2000:i:1:p:457-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.