IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i18p3822-3827.html
   My bibliography  Save this article

Convergence of fundamentalists and chartists’ expectations: An alarm for stock market crash

Author

Listed:
  • Bolgorian, Meysam
  • Raei, Reza

Abstract

We construct a network of the Tehran stock market based on the cross-correlation of trading volume of stocks both for fundamentalists and chartists. In order to investigate the dynamics of expectations of fundamentalists and chartists over time we introduced a homogeneity coefficient. Our results show that in the Tehran Stock Exchange (TSE) which is an emerging market, chartists in comparison with fundamentalists more strongly believe the stocks’ co-movements. We also found that in a bull market (booming period), the optimism of fundamentalists and chartists about the similarity of stocks’ performance diverge from each other while in a bear market (recession period) both groups of traders have approximately same level of pessimism about the simultaneous collapse of stock prices.

Suggested Citation

  • Bolgorian, Meysam & Raei, Reza, 2010. "Convergence of fundamentalists and chartists’ expectations: An alarm for stock market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3822-3827.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:18:p:3822-3827
    DOI: 10.1016/j.physa.2010.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110004097
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2010.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    3. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    6. Paul De Grauwe & Marianna Grimaldi, 2014. "Heterogeneity of Agents, Transactions Costs and the Exchange Rate," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 2, pages 33-70, World Scientific Publishing Co. Pte. Ltd..
    7. Paul De Grauwe & Marianna Grimaldi, 2014. "Exchange Rate Puzzles: A Tale of Switching Attractors," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 3, pages 71-117, World Scientific Publishing Co. Pte. Ltd..
    8. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    9. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    10. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, October.
    11. J.-P. Onnela & K. Kaski & J. Kertész, 2004. "Clustering and information in correlation based financial networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 353-362, March.
    12. Jukka-Pekka Onnela & Jari Saramäki & Kimmo Kaski & János Kertész, 2006. "Financial Market - A Network Perspective," Springer Books, in: Hideki Takayasu (ed.), Practical Fruits of Econophysics, pages 302-306, Springer.
    13. Matteo Marsili, 2002. "Dissecting financial markets: Sectors and states," Papers cond-mat/0207156, arXiv.org.
    14. Matteo Marsili, 2002. "Dissecting financial markets: sectors and states," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 297-302.
    15. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    16. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    17. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    18. N. Vandewalle & F. Brisbois & X. Tordoir, 2001. "Non-random topology of stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 372-374, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2016. "Investigating the Influence Relationship Models for Stocks in Indian Equity Market: A Weighted Network Modelling Study," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-33, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolgorian, Meysam & Raei, Reza, 2011. "A multifractal detrended fluctuation analysis of trading behavior of individual and institutional traders in Tehran stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3815-3825.
    2. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    3. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    4. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    5. Hommes, Cars & Kiseleva, Tatiana & Kuznetsov, Yuri & Verbic, Miroslav, 2012. "Is More Memory In Evolutionary Selection (De)Stabilizing?," Macroeconomic Dynamics, Cambridge University Press, vol. 16(3), pages 335-357, June.
    6. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    7. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    8. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    9. Biondo, Alessio Emanuele, 2018. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-21.
    10. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    11. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    12. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    13. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    14. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    15. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    16. F. Cavalli & A. Naimzada & N. Pecora & M. Pireddu, 2021. "Market sentiment and heterogeneous agents in an evolutive financial model," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1189-1219, September.
    17. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    18. Tai, Chung-Ching & Chen, Shu-Heng & Yang, Lee-Xieng, 2018. "Cognitive ability and earnings performance: Evidence from double auction market experiments," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 409-440.
    19. Schmitt, Noemi & Westerhoff, Frank, 2021. "Trend followers, contrarians and fundamentalists: Explaining the dynamics of financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 117-136.
    20. Yu, Tongkui & Li, Honggang, 2008. "Dynamic Regimes of a Multi-agent Stock Market Model," MPRA Paper 14339, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:18:p:3822-3827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.