IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics0378437119317431.html
   My bibliography  Save this article

Sentiment classification within online social media using whale optimization algorithm and social impact theory based optimization

Author

Listed:
  • Akyol, Sinem
  • Alatas, Bilal

Abstract

In recent years, social networks have become an important part of daily life and are becoming increasingly important. In this study, sentiment analysis or opinion mining, which is one of the most well-known social network analysis problems, is considered as an optimization problem for the first time. In the same way, for the first time, sentiment analysis is considered as a multi-objective problem. Whale Optimization Algorithm and Social Impact Theory based Optimization Algorithm, which are the current intelligent optimization algorithms, are adapted for the sentiment analysis problem. Furthermore, memory feature is integrated into Social Impact Theory based Optimization Algorithm in order to obtain effective results in this study. The obtained results from the proposed algorithms are also compared with thirty-three supervised learning algorithms within real IMDB, Polarity, and Amazon data sets. In order to evaluate the performance of the results; accuracy percentage, precision, recall, F-Measure, and MCC that are the five most commonly used measure in the literature are used. When the results are examined, it is observed that adapted metaheuristic optimization algorithms give more successful results in sentiment analysis problem.

Suggested Citation

  • Akyol, Sinem & Alatas, Bilal, 2020. "Sentiment classification within online social media using whale optimization algorithm and social impact theory based optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317431
    DOI: 10.1016/j.physa.2019.123094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119317431
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Yong & Tang, Ye-ran & Long, Wen, 2019. "Sentiment contagion analysis of interacting investors: Evidence from China’s stock forum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 246-259.
    2. Joakim Westerlund, 2018. "CCE in panels with general unknown factors," Econometrics Journal, Royal Economic Society, vol. 21(3), pages 264-276, October.
    3. Wiesen, Thomas F.P. & Beaumont, Paul M. & Norrbin, Stefan C. & Srivastava, Anuj, 2018. "Are generalized spillover indices overstating connectedness?," Economics Letters, Elsevier, vol. 173(C), pages 131-134.
    4. Zhu, Hengmin & Kong, Yuehan & Wei, Jing & Ma, Jing, 2018. "Effect of users’ opinion evolution on information diffusion in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2034-2045.
    5. Chandra Sekhara Rao, S. & Manisha,, 2018. "Numerical solution of generalized Black–Scholes model," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 401-421.
    6. Oliva, Diego & Abd El Aziz, Mohamed & Ella Hassanien, Aboul, 2017. "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm," Applied Energy, Elsevier, vol. 200(C), pages 141-154.
    7. Hu, Jian & Bansal, Manish & Mehrotra, Sanjay, 2018. "Robust decision making using a general utility set," European Journal of Operational Research, Elsevier, vol. 269(2), pages 699-714.
    8. Araújo, Tanya & Eleutério, Samuel & Louçã, Francisco, 2018. "Do sentiments influence market dynamics? A reconstruction of the Brazilian stock market and its mood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1139-1149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustufa Haider Abidi & Usama Umer & Muneer Khan Mohammed & Mohamed K. Aboudaif & Hisham Alkhalefah, 2020. "Automated Maintenance Data Classification Using Recurrent Neural Network: Enhancement by Spotted Hyena-Based Whale Optimization," Mathematics, MDPI, vol. 8(11), pages 1-33, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Manh-Toan & La, Viet-Phuong & Nguyen, Minh-Hoang & Pham, Thanh-Hang & Vuong, Thu-Trang & Vuong, Ha-My & Pham, Hung-Hiep & Hoang, Anh-Duc & Vuong, Quan-Hoang, 2020. "An analytical view on STEM education and outcomes: Examples of the social gap and gender disparity in Vietnam," Children and Youth Services Review, Elsevier, vol. 119(C).
    2. Gao, Zhenbin & Zhang, Jie, 2023. "The fluctuation correlation between investor sentiment and stock index using VMD-LSTM: Evidence from China stock market," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    3. Zepeng Chen & Lin Li & Xiaojing Chu & Fengfu Yin & Huaqing Li, 2024. "Multi-Objective Disassembly Depth Optimization for End-of-Life Smartphones Considering the Overall Safety of the Disassembly Process," Sustainability, MDPI, vol. 16(3), pages 1-23, January.
    4. Shankhajyoti De & Arabin Kumar Dey & Deepak Kumar Gouda, 2022. "Construction of Confidence Interval for a Univariate Stock Price Signal Predicted Through Long Short Term Memory Network," Annals of Data Science, Springer, vol. 9(2), pages 271-284, April.
    5. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    6. Reem Y. Abdelghany & Salah Kamel & Hamdy M. Sultan & Ahmed Khorasy & Salah K. Elsayed & Mahrous Ahmed, 2021. "Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    7. Dang, Tam Hoang Nhat & Balli, Faruk & Balli, Hatice Ozer & Gabauer, David & Nguyen, Thi Thu Ha, 2024. "Sectoral uncertainty spillovers in emerging markets: A quantile time–frequency connectedness approach," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 121-139.
    8. Zhao, Ruwei, 2020. "Quantifying the cross sectional relation of daily happiness sentiment and stock return: Evidence from US," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    9. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    10. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2020. "From CIP-deviations to a market for risk premia: A dynamic investigation of cross-currency basis swaps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 69(C).
    11. Chaabane Bouali & Horst Schulte & Abdelkader Mami, 2019. "A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search," Energies, MDPI, vol. 12(12), pages 1-32, June.
    12. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    13. Majid Mohammadi & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2019. "Investigation of a New Hybrid Optimization Algorithm Performance in the Optimal Operation of Multi-Reservoir Benchmark Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4767-4782, November.
    14. Zhao, Kena & Ng, Tsan Sheng & Tan, Chin Hon & Pang, Chee Khiang, 2021. "An almost robust model for minimizing disruption exposures in supply systems," European Journal of Operational Research, Elsevier, vol. 295(2), pages 547-559.
    15. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    16. Thomas F. P. Wiesen & Todd Gabe & Lakshya Bharadwaj, 2023. "Econometric connectedness as a measure of urban influence: evidence from Maine," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-16, December.
    17. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    18. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    19. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    20. Li, Yu & Kesharwani, Rajkamal & Sun, Zeyi & Qin, Ruwen & Dagli, Cihan & Zhang, Meng & Wang, Donghai, 2020. "Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.