IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v173y2018icp131-134.html
   My bibliography  Save this article

Are generalized spillover indices overstating connectedness?

Author

Listed:
  • Wiesen, Thomas F.P.
  • Beaumont, Paul M.
  • Norrbin, Stefan C.
  • Srivastava, Anuj

Abstract

Spillover indices computed from VAR models are intended to measure the connectedness between the variables in the system. The generalized spillover index (gSOI) computed using the generalized forecast error variance decomposition is often considerably larger than the conventional spillover index computed from specific Cholesky decompositions leading to the speculation that the gSOI produces an unreasonable measure of connectedness. We demonstrate that the gSOI does not produce unrealistic values.

Suggested Citation

  • Wiesen, Thomas F.P. & Beaumont, Paul M. & Norrbin, Stefan C. & Srivastava, Anuj, 2018. "Are generalized spillover indices overstating connectedness?," Economics Letters, Elsevier, vol. 173(C), pages 131-134.
  • Handle: RePEc:eee:ecolet:v:173:y:2018:i:c:p:131-134
    DOI: 10.1016/j.econlet.2018.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176518304208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2018.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    2. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    3. Cronin, David, 2014. "The interaction between money and asset markets: A spillover index approach," Journal of Macroeconomics, Elsevier, vol. 39(PA), pages 185-202.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Awartani, Basel & Maghyereh, Aktham Issa, 2013. "Dynamic spillovers between oil and stock markets in the Gulf Cooperation Council Countries," Energy Economics, Elsevier, vol. 36(C), pages 28-42.
    6. Stefan Klößner & Sven Wagner, 2014. "Exploring All Var Orderings For Calculating Spillovers? Yes, We Can!—A Note On Diebold And Yilmaz (2009)," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 172-179, January.
    7. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    8. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan & Plakandaras, Vasilios, 2018. "Dynamic connectedness of uncertainty across developed economies: A time-varying approach," Economics Letters, Elsevier, vol. 166(C), pages 63-75.
    9. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    10. Antonakakis, Nikolaos, 2012. "Exchange return co-movements and volatility spillovers before and after the introduction of euro," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1091-1109.
    11. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    12. repec:wsr:wpaper:y:2012:i:080 is not listed on IDEAS
    13. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    14. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    2. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    3. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    4. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    5. Thomas F. P. Wiesen & Todd Gabe & Lakshya Bharadwaj, 2023. "Econometric connectedness as a measure of urban influence: evidence from Maine," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-16, December.
    6. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2021. "Volatility spillovers during market supply shocks: The case of negative oil prices," Resources Policy, Elsevier, vol. 74(C).
    7. Li, Qiang & Nong, Huifu, 2022. "A closer look at Chinese housing market: Measuring intra-city submarket connectedness in Shanghai and Guangzhou," China Economic Review, Elsevier, vol. 74(C).
    8. Awartani, Basel & Aktham, Maghyereh & Cherif, Guermat, 2016. "The connectedness between crude oil and financial markets: Evidence from implied volatility indices," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 56-69.
    9. Maghyereh, Aktham I. & Awartani, Basel & Bouri, Elie, 2016. "The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 57(C), pages 78-93.
    10. Scarcioffolo, Alexandre Ribeiro & Etienne, Xiaoli L., 2019. "How connected are the U.S. regional natural gas markets in the post-deregulation era? Evidence from time-varying connectedness analysis," Journal of Commodity Markets, Elsevier, vol. 15(C), pages 1-1.
    11. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    12. Gabauer, David & Chatziantoniou, Ioannis & Stenfors, Alexis, 2023. "Model-free connectedness measures," Finance Research Letters, Elsevier, vol. 54(C).
    13. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    14. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    15. Noureddine Benlagha & Wael Hemrit, 2022. "Does economic policy uncertainty matter to explain connectedness within the international sovereign bond yields?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(1), pages 1-21, January.
    16. Apergis, Nicholas & Baruník, Jozef & Lau, Marco Chi Keung, 2017. "Good volatility, bad volatility: What drives the asymmetric connectedness of Australian electricity markets?," Energy Economics, Elsevier, vol. 66(C), pages 108-115.
    17. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2020. "From CIP-deviations to a market for risk premia: A dynamic investigation of cross-currency basis swaps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 69(C).
    18. Umar, Zaghum & Aziz, Saqib & Tawil, Dima, 2021. "The impact of COVID-19 induced panic on the return and volatility of precious metals," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).
    19. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    20. Abakah, Emmanuel Joel Aikins & Brahim, Mariem & Carlotti, Jean-Etienne & Tiwari, Aviral Kumar & Mensi, Walid, 2024. "Extreme downside risk connectedness and portfolio hedging among the G10 currencies," International Economics, Elsevier, vol. 178(C).

    More about this item

    Keywords

    Connectedness; Contagion; Market integration; Market linkage; Variance decomposition;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:173:y:2018:i:c:p:131-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.