IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p2008-d443146.html
   My bibliography  Save this article

Automated Maintenance Data Classification Using Recurrent Neural Network: Enhancement by Spotted Hyena-Based Whale Optimization

Author

Listed:
  • Mustufa Haider Abidi

    (Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia)

  • Usama Umer

    (Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia)

  • Muneer Khan Mohammed

    (Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia)

  • Mohamed K. Aboudaif

    (Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia)

  • Hisham Alkhalefah

    (Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

Data classification has been considered extensively in different fields, such as machine learning, artificial intelligence, pattern recognition, and data mining, and the expansion of classification has yielded immense achievements. The automatic classification of maintenance data has been investigated over the past few decades owing to its usefulness in construction and facility management. To utilize automated data classification in the maintenance field, a data classification model is implemented in this study based on the analysis of different mechanical maintenance data. The developed model involves four main steps: (a) data acquisition, (b) feature extraction, (c) feature selection, and (d) classification. During data acquisition, four types of dataset are collected from the benchmark Google datasets. The attributes of each dataset are further processed for classification. Principal component analysis and first-order and second-order statistical features are computed during the feature extraction process. To reduce the dimensions of the features for error-free classification, feature selection was performed. The hybridization of two algorithms, the Whale Optimization Algorithm (WOA) and Spotted Hyena Optimization (SHO), tends to produce a new algorithm—i.e., a Spotted Hyena-based Whale Optimization Algorithm (SH-WOA), which is adopted for performing feature selection. The selected features are subjected to a deep learning algorithm called Recurrent Neural Network (RNN). To enhance the efficiency of conventional RNNs, the number of hidden neurons in an RNN is optimized using the developed SH-WOA. Finally, the efficacy of the proposed model is verified utilizing the entire dataset. Experimental results show that the developed model can effectively solve uncertain data classification, which minimizes the execution time and enhances efficiency.

Suggested Citation

  • Mustufa Haider Abidi & Usama Umer & Muneer Khan Mohammed & Mohamed K. Aboudaif & Hisham Alkhalefah, 2020. "Automated Maintenance Data Classification Using Recurrent Neural Network: Enhancement by Spotted Hyena-Based Whale Optimization," Mathematics, MDPI, vol. 8(11), pages 1-33, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2008-:d:443146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/2008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/2008/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pier Francesco Orrù & Andrea Zoccheddu & Lorenzo Sassu & Carmine Mattia & Riccardo Cozza & Simone Arena, 2020. "Machine Learning Approach Using MLP and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in the Oil and Gas Industry," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    2. Pengzhen Lu & Shengyong Chen & Yujun Zheng, 2012. "Artificial Intelligence in Civil Engineering," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-22, December.
    3. Akyol, Sinem & Alatas, Bilal, 2020. "Sentiment classification within online social media using whale optimization algorithm and social impact theory based optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Alkahtani, 2022. "Supply Chain Management Optimization and Prediction Model Based on Projected Stochastic Gradient," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    2. Mohammed Alkahtani & Mustufa Haider Abidi & Hamoud S. Bin Obaid & Osama Alotaik, 2023. "Modified Gannet Optimization Algorithm for Reducing System Operation Cost in Engine Parts Industry with Pooling Management and Transport Optimization," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    3. Mustufa Haider Abidi & Muneer Khan Mohammed & Hisham Alkhalefah, 2022. "Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing," Sustainability, MDPI, vol. 14(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    2. Chenhong Zhu & J. G. Wang & Na Xu & Wei Liang & Bowen Hu & Peibo Li, 2022. "A Combination Approach of the Numerical Simulation and Data-Driven Analysis for the Impacts of Refracturing Layout and Time on Shale Gas Production," Sustainability, MDPI, vol. 14(23), pages 1-30, December.
    3. James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.
    4. Ke Wang & Ziyi Ying & Shankha Shubhra Goswami & Yongsheng Yin & Yafei Zhao, 2023. "Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment," Sustainability, MDPI, vol. 15(15), pages 1-42, August.
    5. Hail Jung & Jinsu Jeon & Dahui Choi & Jung-Ywn Park, 2021. "Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    6. Hengyang Zhao & Guobao Zhang & Xi Yang, 2022. "GIS Fault Prediction Approach Based on IPSO-LSSVM Algorithm," Sustainability, MDPI, vol. 15(1), pages 1-11, December.
    7. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries," Energies, MDPI, vol. 14(22), pages 1-22, November.
    8. Ke-Lin Du & Chi-Sing Leung & Wai Ho Mow & M. N. S. Swamy, 2022. "Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era," Mathematics, MDPI, vol. 10(24), pages 1-46, December.
    9. Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
    10. do Carmo, Pedro R.X. & do Monte, João Victor L. & Filho, Assis T. de Oliveira & Freitas, Eduardo & Tigre, Matheus F.F.S.L. & Sadok, Djamel & Kelner, Judith, 2023. "A data-driven model for the optimization of energy consumption of an industrial production boiler in a fiber plant," Energy, Elsevier, vol. 284(C).
    11. Eduardo Machado & Tiago Pinto & Vanessa Guedes & Hugo Morais, 2021. "Electrical Load Demand Forecasting Using Feed-Forward Neural Networks," Energies, MDPI, vol. 14(22), pages 1-24, November.
    12. Leonardo Bianchini & Alvaro Marucci & Adele Sateriano & Valerio Di Stefano & Riccardo Alemanno & Andrea Colantoni, 2021. "Urbanization and Long-Term Forest Dynamics in a Metropolitan Region of Southern Europe (1936–2018)," Sustainability, MDPI, vol. 13(21), pages 1-13, November.
    13. Wael Korani & Malek Mouhoub, 2021. "Review on Nature-Inspired Algorithms," SN Operations Research Forum, Springer, vol. 2(3), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2008-:d:443146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.