Construction of Confidence Interval for a Univariate Stock Price Signal Predicted Through Long Short Term Memory Network
Author
Abstract
Suggested Citation
DOI: 10.1007/s40745-020-00307-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dharmaraja Selvamuthu & Vineet Kumar & Abhishek Mishra, 2019. "Indian stock market prediction using artificial neural networks on tick data," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-12, December.
- Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
- Shi, Yong & Tang, Ye-ran & Long, Wen, 2019. "Sentiment contagion analysis of interacting investors: Evidence from China’s stock forum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 246-259.
- O F Demirel & T R Willemain, 2002. "Generation of simulation input scenarios using bootstrap methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 69-78, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shankhyajyoti De & Arabin Kumar Dey & Deepak Gauda, 2020. "Construction of confidence interval for a univariate stock price signal predicted through Long Short Term Memory Network," Papers 2007.00254, arXiv.org.
- Paulo M. D. C. Parente & Richard J. Smith, 2021.
"Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
- Paulo M.D.C. Parente & Richard J. Smith, 2018. "Quasi-Maximum Likelihood and the Kernel Block Bootstrap for Nonlinear Dynamic Models," Working Papers REM 2018/59, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Paulo Parente & Richard J. Smith, 2019. "Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," CeMMAP working papers CWP60/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Patrice Bertail & Stéphan Clémençon, 2006. "Approximate Regenerative-block Bootstrap for Markov Chains : Some Simulation Studies," Working Papers 2006-19, Center for Research in Economics and Statistics.
- Hillebrand, Eric & Lukas, Manuel & Wei, Wei, 2021.
"Bagging weak predictors,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 237-254.
- Manuel Lukas & Eric Hillebrand, 2014. "Bagging Weak Predictors," CREATES Research Papers 2014-01, Department of Economics and Business Economics, Aarhus University.
- Eric Hillebrand & Manuel Lukas & Wei Wei, 2020. "Bagging Weak Predictors," Monash Econometrics and Business Statistics Working Papers 16/20, Monash University, Department of Econometrics and Business Statistics.
- Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011.
"Empirical likelihood block bootstrapping,"
Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
- Jason Allen & Allan Gregory & Katsumi Shimotsu, 2008. "Empirical Likelihood Block Bootstrapping," Working Paper 1156, Economics Department, Queen's University.
- Jason Allen & Allan Gregory & Katsumi Shimotsu, 2008. "Empirical Likelihood Block Bootstrapping," Staff Working Papers 08-18, Bank of Canada.
- Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi & 下津, 克己, 2010. "Empirical Likelihood Block Bootstrapping," Discussion Papers 2010-01, Graduate School of Economics, Hitotsubashi University.
- Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
- Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
- Della Corte, Pasquale & Sarno, Lucio & Valente, Giorgio, 2010. "A century of equity premium predictability and the consumption-wealth ratio: An international perspective," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 313-331, June.
- Shin, Dong Wan & Hwang, Eunju, 2013. "Stationary bootstrapping for cointegrating regressions," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 474-480.
- Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011.
"Cross-sectional dependence robust block bootstrap panel unit root tests,"
Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
- Palm, F.C. & Smeekes, S. & Urbain, J.R.Y.J., 2008. "Cross-sectional dependence robust block bootstrap panel unit root tests," Research Memorandum 048, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Andrew J. Patton, 2009.
"Are "Market Neutral" Hedge Funds Really Market Neutral?,"
The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2295-2330, July.
- Patton, Andrew J., 2004. "Are "market neutral" hedge funds really market neutral?," LSE Research Online Documents on Economics 24819, London School of Economics and Political Science, LSE Library.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Bruno Larue & Jean-Philippe Gervais & Yannick Rancourt, 2010. "Exchange rate pass-through, menu costs and threshold cointegration," Empirical Economics, Springer, vol. 38(1), pages 171-192, February.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Cousido-Rocha, Marta & de Uña-Álvarez, Jacobo & Hart, Jeffrey D., 2019. "A two-sample test for the equality of univariate marginal distributions for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
- repec:hal:spmain:info:hdl:2441/7kr9gv74ut9ngo58gia97t83i7 is not listed on IDEAS
- Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022.
"The Time Variation in Risk Appetite and Uncertainty,"
Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
- Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2019. "The Time Variation in Risk Appetite and Uncertainty," NBER Working Papers 25673, National Bureau of Economic Research, Inc.
- Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020.
"Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model,"
Energy Economics, Elsevier, vol. 88(C).
- Aviral Kumar Tiwari & Goodness C. Aye & Rangan Gupta & Konstantinos Gkillas, 2019. "Gold-Oil Dependence Dynamics and the Role of Geopolitical Risks: Evidence from a Markov-Switching Time-Varying Copula Model," Working Papers 201918, University of Pretoria, Department of Economics.
- Fang, Ying & Li, Qi & Wu, Ximing & Zhang, Daiqiang, 2015. "A data-driven smooth test of symmetry," Journal of Econometrics, Elsevier, vol. 188(2), pages 490-501.
- Francis In & Sangbae Kim, 2012. "An Introduction to Wavelet Theory in Finance:A Wavelet Multiscale Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8431, August.
More about this item
Keywords
Confidence interval; Bootstrap; LSTM; Forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:2:d:10.1007_s40745-020-00307-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.