IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v536y2019ics0378437119304443.html
   My bibliography  Save this article

Entropy generation and endoscopic effects on peristalsis with modified Darcy’s law

Author

Listed:
  • Hayat, Tasawar
  • Nawaz, Sadaf
  • Alsaedi, Ahmed

Abstract

Present attempt highlights the outcome of endoscopy and entropy generation in MHD peristaltic flow of Sisko fluid. Unlike the traditional approach, the flow modeling for porous medium is based upon modified Darcy’s law. Silent features of Joule heating and viscous dissipation are investigated. Convective conditions for heat transfer are utilized. The problem after invoking long wavelength approximation is numerically solved. Graphical analysis provides physical insight. Graphs are plotted for velocity, temperature, entropy generation, Bejan number and heat transfer coefficient for the pertinent parameters of interest. Results discloses the enhancement in Darcy number enhanced the fluid velocity and temperature. It also caused an enhancement in entropy generation and Bejan number. Magnetic field leads to enhance the temperature and entropy generation. Moreover the flexible wall parameters show increasing trend for elastance coefficients whereas damping coefficient resists the fluid velocity.

Suggested Citation

  • Hayat, Tasawar & Nawaz, Sadaf & Alsaedi, Ahmed, 2019. "Entropy generation and endoscopic effects on peristalsis with modified Darcy’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  • Handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119304443
    DOI: 10.1016/j.physa.2019.04.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119304443
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rashidi, Saman & Akar, Shima & Bovand, Masoud & Ellahi, Rahmat, 2018. "Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still," Renewable Energy, Elsevier, vol. 115(C), pages 400-410.
    2. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2015. "Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 273-286.
    3. Wang, Yongqi & Hayat, Tasawar & Ali, Nasir & Oberlack, Martin, 2008. "Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 347-362.
    4. Akbar, Noreen Sher, 2015. "Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field," Energy, Elsevier, vol. 82(C), pages 23-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajmohammadi, M.R. & Haji Molla Ali Tork, M.H., 2019. "Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 234-245.
    2. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.
    3. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    4. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    5. Rashid, M. & Shahzadi, I. & Nadeem, S., 2020. "Significance of Knudsen number and corrugation on EMHD flow under metallic nanoparticles impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    6. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    7. Muhammad, Noor & Nadeem, S. & Issakhov, Alibek, 2020. "Finite volume method for mixed convection flow of Ag–ethylene glycol nanofluid flow in a cavity having thin central heater," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    8. Khan, Arif Ullah & Saleem, S. & Nadeem, S. & Alderremy, A.A., 2020. "Analysis of unsteady non-axisymmetric Homann stagnation point flow of nanofluid and possible existence of multiple solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    9. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. Fang, Shibiao & Mu, Lin & Tu, Wenrong, 2021. "Application design and assessment of a novel small-decentralized solar distillation device based on energy, exergy, exergoeconomic, and enviroeconomic parameters," Renewable Energy, Elsevier, vol. 164(C), pages 1350-1363.
    11. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Reza Aghayari & Heydar Maddah & Mohammad Hossein Ahmadi & Wei-Mon Yan & Nahid Ghasemi, 2018. "Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions," Energies, MDPI, vol. 11(5), pages 1-16, May.
    13. Nasrin, R. & Rahim, N.A. & Fayaz, H. & Hasanuzzaman, M., 2018. "Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research," Renewable Energy, Elsevier, vol. 121(C), pages 286-300.
    14. Azharul Karim & M. Masum Billah & M. T. Talukder Newton & M. Mustafizur Rahman, 2017. "Influence of the Periodicity of Sinusoidal Boundary Condition on the Unsteady Mixed Convection within a Square Enclosure Using an Ag–Water Nanofluid," Energies, MDPI, vol. 10(12), pages 1-21, December.
    15. Abbas, Nadeem & Nadeem, S. & Malik, M.Y., 2020. "Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    16. Mohammad Reza Safaei & Hamid Reza Goshayeshi & Issa Chaer, 2019. "Solar Still Efficiency Enhancement by Using Graphene Oxide/Paraffin Nano-PCM," Energies, MDPI, vol. 12(10), pages 1-13, May.
    17. Selimefendigil, Fatih & Öztop, Hakan F., 2019. "MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    18. Ranjit, N.K. & Shit, G.C., 2017. "Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment," Energy, Elsevier, vol. 128(C), pages 649-660.
    19. Hemmat Esfe, Mohammad & Afrand, Masoud, 2020. "Mathematical and artificial brain structure-based modeling of heat conductivity of water based nanofluid enriched by double wall carbon nanotubes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Ahmad, Shafiq & Nadeem, Sohail & Muhammad, Noor & Issakhov, Alibek, 2020. "Radiative SWCNT and MWCNT nanofluid flow of Falkner–Skan problem with double stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119304443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.