IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119312452.html
   My bibliography  Save this article

MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation

Author

Listed:
  • Selimefendigil, Fatih
  • Öztop, Hakan F.

Abstract

In this study, mixed convective flow of nanofluid in an inclined L-shaped cavity which has elastic walls is numerically analyzed under the effects of internal heat generation and magnetic field by using the finite element technique with the Arbitrary-Lagrangian–Eulerian method. Simulations are performed for different values Richardson number (between 0.03 and 30), inclination angle of the cavity (between 0°and 180°), Hartmann number (between 0 and 50), orientation angle of the magnetic field (between 0°and 90°), internal Rayleigh number (between 104 and 106), solid nanoparticle volume fraction (between 0 and 0.04), flexible wall elastic modulus (between 104 and 108) and aspect ratio (between 0.2 and 0.7) of the L-shaped cavity. It was observed that the effects of elastic wall on the convective heat transfer features are significant for the lowest value of Richardson number and lowest values of elastic modulus while 11% of discrepancy is obtained in the average Nusselt number when cavity with elastic and rigid walls is compared. The impact of the magnetic inclination angle is significant when compared to magnetic field strength for the variation of the average Nusselt number. Cavity inclination angle has significant impacts on the variation of the average Nusselt number for water and nanofluid. A higher size of the cold wall (aspect ratio) increases the heat transfer rate while the internal Rayleigh number reduces it. Enhancement in the average Nusselt number is about 15%–19% at highest nanoparticle volume fraction of the nanofluid while the trends in the convective heat transfer features with respect to changes in the pertinent parameters are similar for water and nanofluid.

Suggested Citation

  • Selimefendigil, Fatih & Öztop, Hakan F., 2019. "MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312452
    DOI: 10.1016/j.physa.2019.122144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312452
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2015. "Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 273-286.
    2. Sivasankaran, S. & Alsabery, A.I. & Hashim, I., 2018. "Internal heat generation effect on transient natural convection in a nanofluid-saturated local thermal non-equilibrium porous inclined cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 275-293.
    3. Sheikholeslami, M. & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong, 2019. "Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 544-556.
    4. Farshad, Seyyed Ali & Sheikholeslami, M., 2019. "Simulation of nanoparticles second law treatment inside a solar collector considering turbulent flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1-12.
    5. Sajid, Muhammad Usman & Ali, Hafiz Muhammad, 2019. "Recent advances in application of nanofluids in heat transfer devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 556-592.
    6. Sajjadi, H. & Amiri Delouei, A. & Sheikholeslami, M. & Atashafrooz, M. & Succi, S., 2019. "Simulation of three dimensional MHD natural convection using double MRT Lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 474-496.
    7. Alashkar, Adnan & Gadalla, Mohamed, 2017. "Thermo-economic analysis of an integrated solar power generation system using nanofluids," Applied Energy, Elsevier, vol. 191(C), pages 469-491.
    8. Alsabery, A.I. & Chamkha, A.J. & Saleh, H. & Hashim, I. & Chanane, B., 2017. "Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 20-38.
    9. Al-Rashed, Abdullah A.A.A. & Ranjbarzadeh, Ramin & Aghakhani, Saeed & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 724-736.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali J. Chamkha & Fatih Selimefendigil & Hakan F. Oztop, 2020. "Pulsating Flow of CNT–Water Nanofluid Mixed Convection in a Vented Trapezoidal Cavity with an Inner Conductive T-Shaped Object and Magnetic Field Effects," Energies, MDPI, vol. 13(4), pages 1-30, February.
    2. Goutam Saha & Ahmed A.Y. Al-Waaly & Manosh C. Paul & Suvash C. Saha, 2023. "Heat Transfer in Cavities: Configurative Systematic Review," Energies, MDPI, vol. 16(5), pages 1-53, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Li, Zhixiong & Sheikholeslami, M. & Ayani, M. & Shamlooei, M. & Shafee, Ahmad & Waly, Mohamed Ibrahim & Tlili, I., 2019. "Acceleration of solidification process by means of nanoparticles in an energy storage enclosure using numerical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 540-552.
    3. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Farshad, Seyyed Ali & Sheikholeslami, M., 2020. "Numerical examination for entropy generation of turbulent nanomaterial flow using complex turbulator in a solar collector," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    6. Sheikholeslami, M. & Sheremet, Mikhail A. & Shafee, Ahmad & Tlili, Iskander, 2020. "Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    7. Shafee, Ahmad & Arabkoohsar, A. & Sheikholeslami, M. & Jafaryar, M. & Ayani, M. & Nguyen-Thoi, Trung & Basha, D. Baba & Tlili, I. & Li, Zhixiong, 2020. "Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    8. Manh, Tran Dinh & Nam, Nguyen Dang & Abdulrahman, Gihad Keyany & Khan, Muhammad Humran & Tlili, I. & Shafee, Ahmad & Shamlooei, M. & Nguyen-Thoi, Trung, 2020. "Investigation of hybrid nanofluid migration within a porous closed domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    9. Abbas, Nadeem & Nadeem, S. & Malik, M.Y., 2020. "Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    10. Xiong, Qingang & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung & Rebey, Amor & Haq, Rizwan-ul & Li, Z., 2020. "Energy storage simulation involving NEPCM solidification in appearance of fins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    11. Sheikholeslami, M. & Zareei, Alireza & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong & Smida, Amor & Tlili, I., 2019. "Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 557-565.
    12. S. A. M. Mehryan & Kaamran Raahemifar & Leila Sasani Gargari & Ahmad Hajjar & Mohamad El Kadri & Obai Younis & Mohammad Ghalambaz, 2021. "Latent Heat Phase Change Heat Transfer of a Nanoliquid with Nano–Encapsulated Phase Change Materials in a Wavy-Wall Enclosure with an Active Rotating Cylinder," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    13. Abbas, Nadeem & Nadeem, S. & Malik, M.Y., 2020. "On extended version of Yamada–Ota and Xue models in micropolar fluid flow under the region of stagnation point," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    14. Sarafraz, M.M. & Tlili, I. & Tian, Zhe & Bakouri, Mohsen & Safaei, Mohammad Reza, 2019. "Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    15. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    16. Hajmohammadi, M.R. & Haji Molla Ali Tork, M.H., 2019. "Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 234-245.
    17. Shah, Tayyab Raza & Ali, Hafiz Muhammad & Zhou, Chao & Babar, Hamza & Janjua, Muhammad Mansoor & Doranehgard, Mohammad Hossein & Hussain, Abid & Sajjad, Uzair & Wang, Chi-Chuan & Sultan, Muhamad, 2022. "Potential evaluation of water-based ferric oxide (Fe2O3-water) nanocoolant: An experimental study," Energy, Elsevier, vol. 246(C).
    18. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    19. Ma, Yulin & Shahsavar, Amin & Moradi, Iman & Rostami, Sara & Moradikazerouni, Alireza & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2021. "Using finite volume method for simulating the natural convective heat transfer of nano-fluid flow inside an inclined enclosure with conductive walls in the presence of a constant temperature heat sour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    20. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.