IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v551y2020ics0378437119322496.html
   My bibliography  Save this article

Significance of Knudsen number and corrugation on EMHD flow under metallic nanoparticles impact

Author

Listed:
  • Rashid, M.
  • Shahzadi, I.
  • Nadeem, S.

Abstract

The impacts of surface wavy roughness on the viscous fluid flow inside microchannel through corrugated walls is examined. The Navier–Stokes equations are simplified by utilizing perturbation technique with incorporated microscopic slip conditions at the wavy wall. The present investigation depends on the assumptions that the corrugations are periodic sinusoidal waves of small amplitude. The considered examination involves the effect electromagnetohydrodynamic on the characteristics of the nanofluid through the corrugated walls under the impact of nanoparticle by considering an appropriate mathematical model. The governing equations are understood by applying the strategy of perturbation, we have assessed analytical solutions for the velocity, temperature and volume flow rate. Examination is introduced by considering water as the base fluid and copper as the nanoparticles in the presence of convective boundary condition. Effect of related parameters on velocity, temperature and Nusselt number are interpreted graphically.

Suggested Citation

  • Rashid, M. & Shahzadi, I. & Nadeem, S., 2020. "Significance of Knudsen number and corrugation on EMHD flow under metallic nanoparticles impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
  • Handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437119322496
    DOI: 10.1016/j.physa.2019.124089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119322496
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.124089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rashidi, Saman & Akar, Shima & Bovand, Masoud & Ellahi, Rahmat, 2018. "Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still," Renewable Energy, Elsevier, vol. 115(C), pages 400-410.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.
    2. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    3. Muhammad, Noor & Nadeem, S. & Issakhov, Alibek, 2020. "Finite volume method for mixed convection flow of Ag–ethylene glycol nanofluid flow in a cavity having thin central heater," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Fang, Shibiao & Mu, Lin & Tu, Wenrong, 2021. "Application design and assessment of a novel small-decentralized solar distillation device based on energy, exergy, exergoeconomic, and enviroeconomic parameters," Renewable Energy, Elsevier, vol. 164(C), pages 1350-1363.
    6. Reza Aghayari & Heydar Maddah & Mohammad Hossein Ahmadi & Wei-Mon Yan & Nahid Ghasemi, 2018. "Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions," Energies, MDPI, vol. 11(5), pages 1-16, May.
    7. Nasrin, R. & Rahim, N.A. & Fayaz, H. & Hasanuzzaman, M., 2018. "Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research," Renewable Energy, Elsevier, vol. 121(C), pages 286-300.
    8. Azharul Karim & M. Masum Billah & M. T. Talukder Newton & M. Mustafizur Rahman, 2017. "Influence of the Periodicity of Sinusoidal Boundary Condition on the Unsteady Mixed Convection within a Square Enclosure Using an Ag–Water Nanofluid," Energies, MDPI, vol. 10(12), pages 1-21, December.
    9. Abbas, Nadeem & Nadeem, S. & Malik, M.Y., 2020. "Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    10. Mohammad Reza Safaei & Hamid Reza Goshayeshi & Issa Chaer, 2019. "Solar Still Efficiency Enhancement by Using Graphene Oxide/Paraffin Nano-PCM," Energies, MDPI, vol. 12(10), pages 1-13, May.
    11. Ahmad, Shafiq & Nadeem, Sohail & Muhammad, Noor & Issakhov, Alibek, 2020. "Radiative SWCNT and MWCNT nanofluid flow of Falkner–Skan problem with double stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    12. Rashidi, Saman & Bovand, Masoud & Rahbar, Nader & Esfahani, Javad Abolfazli, 2018. "Steps optimization and productivity enhancement in a nanofluid cascade solar still," Renewable Energy, Elsevier, vol. 118(C), pages 536-545.
    13. Youngho Lee & Hyomin Jeong & Yonmo Sung, 2021. "Thermal Absorption Performance Evaluation of Water-Based Nanofluids (CNTs, Cu, and Al 2 O 3 ) for Solar Thermal Harvesting," Energies, MDPI, vol. 14(16), pages 1-12, August.
    14. Hayat, Tasawar & Nawaz, Sadaf & Alsaedi, Ahmed, 2019. "Entropy generation and endoscopic effects on peristalsis with modified Darcy’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    15. Ma, Yuan & Rashidi, M.M. & Mohebbi, Rasul & Yang, Zhigang, 2020. "Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method," Energy, Elsevier, vol. 199(C).
    16. Ahmad, Manzoor & Muhammad, Taseer & Ahmad, Iftikhar & Aly, Shaban, 2020. "Time-dependent 3D flow of viscoelastic nanofluid over an unsteady stretching surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Liu, Changhui & Qiao, Yu & Du, Peixing & Zhang, Jiahao & Zhao, Jiateng & Liu, Chenzhen & Huo, Yutao & Qi, Cong & Rao, Zhonghao & Yan, Yuying, 2021. "Recent advances of nanofluids in micro/nano scale energy transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Yingjie Zhou & Qibin Li & Qiang Wang, 2019. "Energy Storage Analysis of UIO-66 and Water Mixed Nanofluids: An Experimental and Theoretical Study," Energies, MDPI, vol. 12(13), pages 1-9, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437119322496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.