IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v554y2020ics0378437119321740.html
   My bibliography  Save this article

Analysis of unsteady non-axisymmetric Homann stagnation point flow of nanofluid and possible existence of multiple solutions

Author

Listed:
  • Khan, Arif Ullah
  • Saleem, S.
  • Nadeem, S.
  • Alderremy, A.A.

Abstract

This study examines the unsteady 3D non-axisymmetric Homann flow of an electrically conducting nanofluid in the presence of buoyancy forces. We consider the uniform external magnetic field B0, by neglecting induced magnetic field and examine the three possible directions of magnetic field which coincides with the direction of axes. A similarity solution is derived which involves the important physical dimensionless parameters like the nanoparticles volume fraction φ, the unsteadiness parameter ω, the buoyancy parameter λ,Hartmann numberMandshear to strain ratioγ. We have treated the case for forced convection when λ=0 which arise from the singularity γ=∓1. We found that, for large γ and λ, the leading terms of the solutions are independent of M and ω, and the effects of φ in that solutions are negligible. Numerical results are found for illustrative values of all the flow parameters by using bvp4c scheme in MATLAB. The critical values λc of λ are seen in opposing flow for small rate of deceleration parameter ω while it changes to assisting flow for large value of ω.

Suggested Citation

  • Khan, Arif Ullah & Saleem, S. & Nadeem, S. & Alderremy, A.A., 2020. "Analysis of unsteady non-axisymmetric Homann stagnation point flow of nanofluid and possible existence of multiple solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
  • Handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437119321740
    DOI: 10.1016/j.physa.2019.123920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321740
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2015. "Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 273-286.
    2. Mohebbi, Rasul & Izadi, Mohsen & Sajjadi, Hasan & Delouei, Amin Amiri & Sheremet, Mikhail A., 2019. "Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Hajmohammadi, M.R. & Haji Molla Ali Tork, M.H., 2019. "Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 234-245.
    3. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    4. Afrouzi, Hamid Hassanzadeh & Hosseini, Mirolah & Toghraie, Davood & Mehryaar, Ehsan & Afrand, Masoud, 2020. "Thermo-hydraulic characteristics investigation of nanofluid heat transfer in a microchannel with super hydrophobic surfaces under non-uniform magnetic field using Incompressible Preconditioned Lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    5. Aly, Abdelraheem M. & Raizah, Z.A.S., 2020. "Incompressible smoothed particle hydrodynamics simulation of natural convection in a nanofluid-filled complex wavy porous cavity with inner solid particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Selimefendigil, Fatih & Öztop, Hakan F., 2019. "MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Jiale Fu & Tiechen Zhang & Menghan Li & Su Li & Xianglin Zhong & Xiaori Liu, 2019. "Study on Flow and Heat Transfer Characteristics of Porous Media in Engine Particulate Filters Based on Lattice Boltzmann Method," Energies, MDPI, vol. 12(17), pages 1-29, August.
    8. Hemmat Esfe, Mohammad & Afrand, Masoud, 2020. "Mathematical and artificial brain structure-based modeling of heat conductivity of water based nanofluid enriched by double wall carbon nanotubes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Ali J. Chamkha & Fatih Selimefendigil & Hakan F. Oztop, 2020. "Pulsating Flow of CNT–Water Nanofluid Mixed Convection in a Vented Trapezoidal Cavity with an Inner Conductive T-Shaped Object and Magnetic Field Effects," Energies, MDPI, vol. 13(4), pages 1-30, February.
    10. Sheikholeslami, Mohsen & Bandpy, Mofid Gorji & Ashorynejad, Hamid Reza, 2015. "Lattice Boltzmann Method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 58-70.
    11. Toghaniyan, Abolfazl & Zarringhalam, Majid & Akbari, Omid Ali & Sheikh Shabani, Gholamreza Ahmadi & Toghraie, Davood, 2018. "Application of lattice Boltzmann method and spinodal decomposition phenomenon for simulating two-phase thermal flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 673-689.
    12. Hayat, Tasawar & Nawaz, Sadaf & Alsaedi, Ahmed, 2019. "Entropy generation and endoscopic effects on peristalsis with modified Darcy’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    13. Yedhu Krishnan, R. & Manikandan, S. & Suganthi, K.S. & Leela Vinodhan, V. & Rajan, K.S., 2016. "Novel copper – Propylene glycol nanofluid as efficient thermic fluid for potential application in discharge cycle of thermal energy storage," Energy, Elsevier, vol. 107(C), pages 482-492.
    14. Ranjit, N.K. & Shit, G.C., 2017. "Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 458-476.
    15. Goutam Saha & Ahmed A.Y. Al-Waaly & Manosh C. Paul & Suvash C. Saha, 2023. "Heat Transfer in Cavities: Configurative Systematic Review," Energies, MDPI, vol. 16(5), pages 1-53, February.
    16. Sarafraz, M.M. & Tlili, I. & Tian, Zhe & Bakouri, Mohsen & Safaei, Mohammad Reza, 2019. "Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437119321740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.