IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v6y2024i3d10.1007_s42521-024-00114-3.html
   My bibliography  Save this article

Improving credit risk assessment in P2P lending with explainable machine learning survival analysis

Author

Listed:
  • Gero Friedrich Bone-Winkel

    (Technische Universität Berlin)

  • Felix Reichenbach

    (Technische Universität Berlin)

Abstract

Recent research using explainable machine learning survival analysis demonstrated its ability to identify new risk factors in the medical field. In this study, we adapted this methodology to credit risk assessment. We used a comprehensive dataset from the Estonian P2P lending platform Bondora, consisting of over 350,000 loans and 112 features with a loan volume of 915 million euros. First, we applied classical (linear) and machine learning (extreme gradient-boosted) Cox models to estimate the risk of these loans and then risk-rated them using risk stratification. For each rating category we calculated default rates, rates of return, and plotted Kaplan–Meier curves. These performance criteria revealed that the boosted Cox model outperformed both the classical Cox model and the platform’s rating. For instance, the boosted model’s highest rating category had an annual excess return of 18% and a lower default rate compared to the platform’s best rating. Second, we explained the machine learning model’s output using Shapley Additive Explanations. This analysis revealed novel nonlinear relationships (e.g., higher risk for borrowers over age 55) and interaction effects (e.g., between age and housing situation) that provide promising avenues for future research. The machine-learning model also found feature contributions aligning with existing research, such as lower default risk associated with older borrowers, females, individuals with mortgages, or those with higher education. Overall, our results reveal that explainable machine learning survival analysis excels at risk rating, profit scoring, and risk factor analysis, facilitating more precise and transparent credit risk assessments.

Suggested Citation

  • Gero Friedrich Bone-Winkel & Felix Reichenbach, 2024. "Improving credit risk assessment in P2P lending with explainable machine learning survival analysis," Digital Finance, Springer, vol. 6(3), pages 501-542, September.
  • Handle: RePEc:spr:digfin:v:6:y:2024:i:3:d:10.1007_s42521-024-00114-3
    DOI: 10.1007/s42521-024-00114-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-024-00114-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-024-00114-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaofeng Zhang & Wei Xiong & Wancheng Ni & Xin Li, 2015. "Value of big data to finance: observations on an internet credit Service Company in China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-18, December.
    2. Teply, Petr & Polena, Michal, 2020. "Best classification algorithms in peer-to-peer lending," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    3. Dudley, Carlton L, Jr, 1972. "A Note on Reinvestment Assumptions in Choosing Between Net Present Value and Internal Rate of Return," Journal of Finance, American Finance Association, vol. 27(4), pages 907-915, September.
    4. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Juanjuan Chen & Yabin Zhang & Zhujia Yin, 2018. "Education Premium In The Online Peer-To-Peer Lending Marketplace: Evidence From The Big Data In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(01), pages 45-64, March.
    6. Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
    7. Lore Dirick & Gerda Claeskens & Bart Baesens, 2017. "Time to default in credit scoring using survival analysis: a benchmark study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 652-665, June.
    8. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    9. Vincenzo Bavoso, 2020. "The promise and perils of alternative market-based finance: the case of P2P lending in the UK," Journal of Banking Regulation, Palgrave Macmillan, vol. 21(4), pages 395-409, December.
    10. Miaojun Bai & Yan Zheng & Yun Shen, 2022. "Gradient boosting survival tree with applications in credit scoring," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 39-55, January.
    11. Cuiqing Jiang & Zhao Wang & Ruiya Wang & Yong Ding, 2018. "Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending," Annals of Operations Research, Springer, vol. 266(1), pages 511-529, July.
    12. Carlos Serrano-Cinca & Begoña Gutiérrez-Nieto & Luz López-Palacios, 2015. "Determinants of Default in P2P Lending," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    13. Jonathan J. Rolison & Yaniv Hanoch & Stacey Wood & Pi-Ju Liu, 2014. "Risk-Taking Differences Across the Adult Life Span: A Question of Age and Domain," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 69(6), pages 870-880.
    14. Xuchen Lin & Xiaolong Li & Zhong Zheng, 2017. "Evaluating borrower’s default risk in peer-to-peer lending: evidence from a lending platform in China," Applied Economics, Taylor & Francis Journals, vol. 49(35), pages 3538-3545, July.
    15. van Liebergen, Bart, 2017. "Machine learning: A revolution in risk management and compliance?," Journal of Financial Transformation, Capco Institute, vol. 45, pages 60-67.
    16. Caglayan, Mustafa & Pham, Tho & Talavera, Oleksandr & Xiong, Xiong, 2020. "Asset mispricing in peer-to-peer loan secondary markets," Journal of Corporate Finance, Elsevier, vol. 65(C).
    17. Felix Reichenbach & Martin Walther, 2021. "Signals in equity-based crowdfunding and risk of failure," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    18. Riza Emekter & Yanbin Tu & Benjamas Jirasakuldech & Min Lu, 2015. "Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending," Applied Economics, Taylor & Francis Journals, vol. 47(1), pages 54-70, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    2. Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
    3. Jong Wook Lee & So Young Sohn, 2021. "Evaluating borrowers’ default risk with a spatial probit model reflecting the distance in their relational network," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-11, December.
    4. Liu, Yiting & Baals, Lennart John & Osterrieder, Jörg & Hadji-Misheva, Branka, 2024. "Network centrality and credit risk: A comprehensive analysis of peer-to-peer lending dynamics," Finance Research Letters, Elsevier, vol. 63(C).
    5. Samuel Ribeiro-Navarrete & Juan Piñeiro-Chousa & M. Ángeles López-Cabarcos & Daniel Palacios-Marqués, 2022. "Crowdlending: mapping the core literature and research frontiers," Review of Managerial Science, Springer, vol. 16(8), pages 2381-2411, November.
    6. Ligang Zhou & Chao Ma, 2023. "A Comparison of Different Rules on Loans Evaluation in Peer-to-Peer Lending by Gradient Boosting Models Under Moving Windows with Two Timestamps," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1481-1504, December.
    7. Wu, Yu & Zhang, Tong, 2021. "Can credit ratings predict defaults in peer-to-peer online lending? Evidence from a Chinese platform," Finance Research Letters, Elsevier, vol. 40(C).
    8. Mousumi Munmun & Dongli Zhang & Charles C. Luo, 2024. "Peer-to-Peer Lending Performance Improvement: Learn from Lean Principles," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(1), pages 101-101, February.
    9. Baumöhl, Eduard & Lyócsa, Štefan & Vašaničová, Petra, 2024. "Macroeconomic environment and the future performance of loans: Evidence from three peer-to-peer platforms," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    10. Davaadorj, Zagdbazar & Enkhtaivan, Bolortuya & Lu, Wenling, 2024. "The role of job titles in online peer-to-peer lending: An empirical investigation on skilled borrowers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    11. Mengyin Li & Phillip H. Phan & Xian Sun, 2021. "Business Friendliness: A Double-Edged Sword," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    12. Gaigalienė Asta & Česnys Dovydas, 2018. "Determinants of Default in Lithuanian Peer-To-Peer Platforms," Management of Organizations: Systematic Research, Sciendo, vol. 80(1), pages 19-36, December.
    13. Jin, Ming & Yin, Mingmei & Chen, Zhongfei, 2021. "Do investors prefer borrowers from high level of trust cities? Evidence from China’s P2P market," Research in International Business and Finance, Elsevier, vol. 58(C).
    14. Hyunwoo Woo & So Young Sohn, 2022. "A credit scoring model based on the Myers–Briggs type indicator in online peer-to-peer lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    15. Kräussl, Roman & Kräussl, Zsofia & Pollet, Joshua & Rinne, Kalle, 2024. "The performance of marketplace lenders," Journal of Banking & Finance, Elsevier, vol. 162(C).
    16. Xueru Chen & Xiaoji Hu & Shenglin Ben, 2021. "How do reputation, structure design and FinTech ecosystem affect the net cash inflow of P2P lending platforms? Evidence from China," Electronic Commerce Research, Springer, vol. 21(4), pages 1055-1082, December.
    17. Zhao Wang & Cuiqing Jiang & Huimin Zhao, 2022. "Know Where to Invest: Platform Risk Evaluation in Online Lending," Information Systems Research, INFORMS, vol. 33(3), pages 765-783, September.
    18. Wang, Qi & Xiong, Xiong & Zheng, Zunxin, 2021. "Platform Characteristics and Online Peer-to-Peer Lending: Evidence from China," Finance Research Letters, Elsevier, vol. 38(C).
    19. Wu, Bao & Liu, Zijia & Gu, Qiuyang & Tsai, Fu-Sheng, 2023. "Underdog mentality, identity discrimination and access to peer-to-peer lending market: Exploring effects of digital authentication," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
    20. Ajay Byanjankar & József Mezei & Markku Heikkilä, 2021. "Data‐driven optimization of peer‐to‐peer lending portfolios based on the expected value framework," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(2), pages 119-129, April.

    More about this item

    Keywords

    P2P lending; Explainable AI; Cox model; Credit risk; SHAP; Survival analysis;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • G51 - Financial Economics - - Household Finance - - - Household Savings, Borrowing, Debt, and Wealth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:6:y:2024:i:3:d:10.1007_s42521-024-00114-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.