IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11267-d909415.html
   My bibliography  Save this article

Exploring Factors That Affected Student Well-Being during the COVID-19 Pandemic: A Comparison of Data-Mining Approaches

Author

Listed:
  • Hülya Yürekli

    (Department of Statistics, Yıldız Technical University, Istanbul 34220, Türkiye)

  • Öyküm Esra Yiğit

    (Department of Statistics, Yıldız Technical University, Istanbul 34220, Türkiye)

  • Okan Bulut

    (Centre for Research in Applied Measurement and Evaluation, University of Alberta, Edmonton, AB T6G 2G5, Canada)

  • Min Lu

    (Department of Public Health Sciences, Miler School of Medicine, University of Miami, Miami, FL 33136, USA)

  • Ersoy Öz

    (Department of Statistics, Yıldız Technical University, Istanbul 34220, Türkiye)

Abstract

COVID-19-related school closures caused unprecedented and prolonged disruption to daily life, education, and social and physical activities. This disruption in the life course affected the well-being of students from different age groups. This study proposed analyzing student well-being and determining the most influential factors that affected student well-being during the COVID-19 pandemic. With this aim, we adopted a cross-sectional study designed to analyze the student data from the Responses to Educational Disruption Survey (REDS) collected between December 2020 and July 2021 from a large sample of grade 8 or equivalent students from eight countries ( n = 20,720), including Burkina Faso, Denmark, Ethiopia, Kenya, the Russian Federation, Slovenia, the United Arab Emirates, and Uzbekistan. We first estimated a well-being IRT score for each student in the REDS student database. Then, we used 10 data-mining approaches to determine the most influential factors that affected the well-being of students during the COVID-19 outbreak. Overall, 178 factors were analyzed. The results indicated that the most influential factors on student well-being were multifarious. The most influential variables on student well-being were students’ worries about contracting COVID-19 at school, their learning progress during the COVID-19 disruption, their motivation to learn when school reopened, and their excitement to reunite with friends after the COVID-19 disruption.

Suggested Citation

  • Hülya Yürekli & Öyküm Esra Yiğit & Okan Bulut & Min Lu & Ersoy Öz, 2022. "Exploring Factors That Affected Student Well-Being during the COVID-19 Pandemic: A Comparison of Data-Mining Approaches," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11267-:d:909415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Peter Emerson, 2013. "The original Borda count and partial voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(2), pages 353-358, February.
    3. Yoonsuh Jung, 2018. "Multiple predicting K-fold cross-validation for model selection," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 197-215, January.
    4. Min Lu & Hemant Ishwaran, 2021. "Cure and death play a role in understanding dynamics for COVID-19: Data-driven competing risk compartmental models, with and without vaccination," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    5. Abdallah Y Naser & Hadeel T Al-Hadithi & Eman Zmaily Dahmash & Hassan Alwafi & Salwan Salah Alwan & Zainab Ali Abdullah, 2021. "The effect of the 2019 coronavirus disease outbreak on social relationships: A cross-sectional study in Jordan," International Journal of Social Psychiatry, , vol. 67(6), pages 664-671, September.
    6. Antonio Hernández-Blanco & Boris Herrera-Flores & David Tomás & Borja Navarro-Colorado, 2019. "A Systematic Review of Deep Learning Approaches to Educational Data Mining," Complexity, Hindawi, vol. 2019, pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    2. Aras Bozkurt & Abdulkadir Karadeniz & David Baneres & Ana Elena Guerrero-Roldán & M. Elena Rodríguez, 2021. "Artificial Intelligence and Reflections from Educational Landscape: A Review of AI Studies in Half a Century," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    3. Sarmah, Manash Jyoti & Goswami, Himangshu Prabal, 2023. "Learning coherences from nonequilibrium fluctuations in a quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    4. Nicola Baldo & Matteo Miani & Fabio Rondinella & Clara Celauro, 2021. "A Machine Learning Approach to Determine Airport Asphalt Concrete Layer Moduli Using Heavy Weight Deflectometer Data," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    5. Baumöhl, Eduard & Lyócsa, Štefan & Vašaničová, Petra, 2024. "Macroeconomic environment and the future performance of loans: Evidence from three peer-to-peer platforms," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    6. João A. Bastos, 2022. "Predicting Credit Scores with Boosted Decision Trees," Forecasting, MDPI, vol. 4(4), pages 1-11, November.
    7. Laruelle, Annick, 2021. "Voting to select projects in participatory budgeting," European Journal of Operational Research, Elsevier, vol. 288(2), pages 598-604.
    8. Andrew C. Eggers, 2021. "A diagram for analyzing ordinal voting systems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(1), pages 143-171, January.
    9. Pang, Professor Sulin & Hou, Xianyan & Xia, Lianhu, 2021. "Borrowers’ credit quality scoring model and applications, with default discriminant analysis based on the extreme learning machine," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    10. Weizhang Liang & Asli Sari & Guoyan Zhao & Stephen D. McKinnon & Hao Wu, 2020. "Short-term rockburst risk prediction using ensemble learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1923-1946, November.
    11. Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
    12. Jiachuang Wang & Haoji Ma & Xianhang Yan, 2023. "Rockburst Intensity Classification Prediction Based on Multi-Model Ensemble Learning Algorithms," Mathematics, MDPI, vol. 11(4), pages 1-29, February.
    13. Ram, Pappu Kalyan & Pandey, Neeraj & Persis, Jinil, 2024. "Modeling social coupon redemption decisions of consumers in food industry: A machine learning perspective," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    14. Wei-Chao Lin & Ching Chen, 2021. "Novel World University Rankings Combining Academic, Environmental and Resource Indicators," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    15. Jeisson Prieto & Rafael Malagón & Jonatan Gomez & Elizabeth León, 2021. "Urban Vulnerability Assessment for Pandemic Surveillance—The COVID-19 Case in Bogotá, Colombia," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    16. Wijdan Abbas & Shahla Eltayeb, 2022. "Psychosocial indicators of individual behavior during COVID 19: Delphi approach," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    17. Eric Kamwa, 2022. "Scoring Rules, Ballot Truncation, and the Truncation Paradox," Working Papers hal-03632662, HAL.
    18. Eric Kamwa, 2022. "Scoring rules, ballot truncation, and the truncation paradox," Public Choice, Springer, vol. 192(1), pages 79-97, July.
    19. Xingyu Li & Long Li & Longgao Chen & Ting Zhang & Jianying Xiao & Longqian Chen, 2022. "Random Forest Estimation and Trend Analysis of PM 2.5 Concentration over the Huaihai Economic Zone, China (2000–2020)," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    20. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11267-:d:909415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.