IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v633y2024ics0378437123008956.html
   My bibliography  Save this article

The validation of pedestrian trajectories during turning and obstacle avoidance in virtual environments

Author

Listed:
  • Jianlin, Li
  • Jun, Zhang
  • Xuehua, Song
  • Hang, Yu
  • Xintong, Li
  • Saizhe, Ding
  • Weiguo, Song

Abstract

Virtual Reality (VR) enables to study pedestrian evacuation behavior in emergencies. Yet, studies are lacking in assessing the similarity of pedestrian behaviors like avoiding and turning in virtual and real environments. In this work, we test pedestrians' avoiding and turning behavior in virtual environments from the first-person and third-person perspectives and compare the results in real environments based on the pedestrian trajectories. It is shown that the differences between the real and virtual environments in many indicators were significant in statistics, and the trajectories of participants from the third-person perspective in the virtual environment were much more similar to those from the real environment under our experimental settings. Meanwhile, most participants (22 out of 23) think that their avoiding and turning behaviors in the virtual environment from the third-person perspective were more in line with those in the real environment. The study shows that the third-person perspective is better than the first-person perspective in terms of trajectory indicators and controlling experience. The study could be used as a basis in the future for the perspective choosing while carrying out similar virtual experiments, so as to ensure the similarity of pedestrian trajectories in virtual and real environments.

Suggested Citation

  • Jianlin, Li & Jun, Zhang & Xuehua, Song & Hang, Yu & Xintong, Li & Saizhe, Ding & Weiguo, Song, 2024. "The validation of pedestrian trajectories during turning and obstacle avoidance in virtual environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
  • Handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123008956
    DOI: 10.1016/j.physa.2023.129340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008956
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jia & Ni, Shunjiang & Shen, Shifei & Li, Shuying, 2019. "Empirical study of crowd dynamic in public gathering places during a terrorist attack event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1-9.
    2. Zeng, Guang & Zhang, Jun & Ye, Rui & Cao, Shuchao & Song, Weiguo, 2022. "Pedestrian dynamics of single-file experiments with music considering different music and different instructions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    3. Shi, Zhigang & Zhang, Jun & Song, Weiguo, 2021. "Where luggage-related facilities should be placed along passageways in traffic hubs: Right, left, or in the middle?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Ren, Xiangxia & Hu, Yanghui & Li, Hongliu & Zhang, Jun & Song, Weiguo & Xu, Han, 2022. "Simulation of building evacuation with different ratios of the elderly considering the influence of obstacle position," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    5. Jin, Cheng-Jie & Jiang, Rui & Li, Ruiwen & Li, Dawei, 2019. "Single-file pedestrian flow experiments under high-density conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Bangkun & Xuan, Chenrui & Xie, Wei & Shi, Meng & Ma, Yi, 2024. "Dynamic characteristics of the sideways movement of pedestrians: An experimental study based on single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    2. Fu, Libi & Chen, Yunqian & Qin, Huigui & Chen, Qiyi & He, Yangjian & Shi, Yongqian, 2023. "Dynamics of merging flow involving luggage-laden pedestrians in a Y-shaped corridor: An experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    3. Cao, Shuchao & Wang, Zhixiang & Zeng, Guang & Ren, Xiangxia & Li, Xiaolian, 2024. "Single-file movement of pedestrians at different visibility levels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    4. Xue, Shuqi & Shiwakoti, Nirajan, 2023. "A meta-synthesis of experimental studies of pedestrian movement in single-file flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    6. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Song, Weiguo, 2024. "Collision avoidance behaviours of luggage-laden pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    7. Shi, Zhigang & Zhang, Jun & Shang, Zhigang & Fan, Minghao & Song, Weiguo, 2022. "The effect of obstacle layouts on regulating luggage-laden pedestrian flow through bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    8. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Yu, Hang & Li, Xintong & Song, Weiguo & Zhang, Jun & Li, Xudong & Xu, Han & Jiang, Kechun, 2022. "Pedestrian emergency evacuation model based on risk field under attack event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Yu, Rongfu & Mao, Qinghua & Lv, Jian, 2022. "An extended model for crowd evacuation considering rescue behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    11. Enrico Quagliarini & Fabio Fatiguso & Michele Lucesoli & Gabriele Bernardini & Elena Cantatore, 2021. "Risk Reduction Strategies against Terrorist Acts in Urban Built Environments: Towards Sustainable and Human-Centred Challenges," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    12. Liu, Jiaming & Zhang, Hui & Ding, Ning & Li, Yuntao, 2024. "A modified social force model for sudden attack evacuation based on Yerkes–Dodson law and the tendency toward low risk areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    13. Zeng, Guang & Zhang, Jun & Ye, Rui & Cao, Shuchao & Song, Weiguo, 2022. "Pedestrian dynamics of single-file experiments with music considering different music and different instructions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    14. Yi, Ruolong & Du, Mingyu & Song, Weiguo & Zhang, Jun, 2024. "Fast trajectory extraction and pedestrian dynamics analysis using deep neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    15. Zeng, Guang & Ye, Rui & Zhang, Jun & Cao, Shuchao & Song, Weiguo, 2023. "Macroscopic and microscopic movement properties of the fast walking pedestrian flow with single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    16. Zeng, Guang & Li, Zhiyuan & Ye, Rui & Cao, Shuchao & Lian, Liping, 2024. "Evacuation dynamics of pedestrians passing through a low-boundary exit in the context of sound signal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    17. Guo, Chenglin & Huo, Feizhou & Li, Yufei & Li, Chao & Zhang, Jun, 2024. "An evacuation model considering pedestrian crowding and stampede under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    18. Wei, Yidong & Hu, Zuoan & Zeng, Tian & Xie, Wei & Ma, Yi, 2023. "Influence of walkway slope on single-file pedestrian flow dynamics: Results from an experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    19. Jin, Cheng-Jie & Jiang, Rui & Liu, Tongfei & Li, Dawei & Wang, Hao & Liu, Xianglong, 2021. "Pedestrian dynamics with different corridor widths: Investigation on a series of uni-directional and bi-directional experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    20. Cheng-Jie Jin & Ke-Da Shi & Shu-Yi Fang, 2023. "Simulation of Single-File Pedestrian Flow under High-Density Condition by a Modified Social Force Model," Sustainability, MDPI, vol. 15(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:633:y:2024:i:c:s0378437123008956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.