IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v521y2019icp724-736.html
   My bibliography  Save this article

Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect

Author

Listed:
  • Al-Rashed, Abdullah A.A.A.
  • Ranjbarzadeh, Ramin
  • Aghakhani, Saeed
  • Soltanimehr, Mehdi
  • Afrand, Masoud
  • Nguyen, Truong Khang

Abstract

This paper aims to study the effect of nanoparticle shape on the entropy generation characteristics of boehmite alumina nanofluid flowing through a horizontal double-pipe minichannel heat exchanger. Boehmite alumina (γ-AlOOH) nanoparticles of different shapes (cylindrical, brick, blade, platelet, and spherical) are dispersed in a mixture of water/ethylene glycol as the nanofluid. The nanofluid and water flow in the tube side and annulus side of the heat exchanger, respectively. The effects of the Reynolds number and nanoparticle concentration on the frictional entropy generation rate, thermal entropy generation rate, total entropy generation rate and Bejan number are numerically analyzed for different nanoparticle shapes. The obtained results demonstrated that the nanofluids containing platelet shape and spherical shape nanoparticles have the highest and lowest rates of thermal, frictional, and total entropy generation, respectively. Additionally, it was found that the rates of thermal, frictional, and total entropy generation increase with an increase in the Reynolds number, while the opposite is true for the Bejan number. Furthermore, it was inferred from the obtained results that the increase of nanoparticle concentration results in higher frictional and total entropy generation rates and lower Bejan number.

Suggested Citation

  • Al-Rashed, Abdullah A.A.A. & Ranjbarzadeh, Ramin & Aghakhani, Saeed & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 724-736.
  • Handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:724-736
    DOI: 10.1016/j.physa.2019.01.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301128
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hemmat Esfe, Mohammad & Kamyab, Mohammad Hassan & Afrand, Masoud & Amiri, Mahmoud Kiannejad, 2018. "Using artificial neural network for investigating of concurrent effects of multi-walled carbon nanotubes and alumina nanoparticles on the viscosity of 10W-40 engine oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 610-624.
    2. Karimipour, Arash & D’Orazio, Annunziata & Goodarzi, Marjan, 2018. "Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 729-745.
    3. Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
    4. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    5. Hemmat Esfe, Mohammad & Reiszadeh, Mahdi & Esfandeh, Saeed & Afrand, Masoud, 2018. "Optimization of MWCNTs (10%) – Al2O3 (90%)/5W50 nanofluid viscosity using experimental data and artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 731-744.
    6. Hemmat Esfe, Mohammad & Rostamian, Hossein & Esfandeh, Saeed & Afrand, Masoud, 2018. "Modeling and prediction of rheological behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 625-634.
    7. Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Mohammad Hossein & Ghazvini, Mahyar & Maddah, Heydar & Kahani, Mostafa & Pourfarhang, Samira & Pourfarhang, Amin & Heris, Saeed Zeinali, 2020. "Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    2. Chen, Zhixiong & Ashkezari, Abbas Zarenezhad & Tlili, Iskander, 2020. "Applying artificial neural network and curve fitting method to predict the viscosity of SAE50/MWCNTs-TiO2 hybrid nanolubricant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Abu Shadate Faisal Mahamude & Muhamad Kamal Kamarulzaman & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Rosli Abu Bakar & Talal Yusaf & Sivarao Subramanion & Belal , 2022. "A Comprehensive Review on Efficiency Enhancement of Solar Collectors Using Hybrid Nanofluids," Energies, MDPI, vol. 15(4), pages 1-26, February.
    4. Ma, Yulin & Shahsavar, Amin & Moradi, Iman & Rostami, Sara & Moradikazerouni, Alireza & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2021. "Using finite volume method for simulating the natural convective heat transfer of nano-fluid flow inside an inclined enclosure with conductive walls in the presence of a constant temperature heat sour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    5. Ruiqing Du & Dandan Jiang & Yong Wang, 2020. "Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid," Energies, MDPI, vol. 13(7), pages 1-18, April.
    6. Wu, Huawei & Al-Rashed, Abdullah A.A.A. & Barzinjy, Azeez A. & Shahsavar, Amin & Karimi, Ali & Talebizadehsardari, Pouyan, 2019. "Curve-fitting on experimental thermal conductivity of motor oil under influence of hybrid nano additives containing multi-walled carbon nanotubes and zinc oxide," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Moghadam, Iman Panahi & Afrand, Masoud & Hamad, Samir M. & Barzinjy, Azeez A. & Talebizadehsardari, Pouyan, 2020. "Curve-fitting on experimental data for predicting the thermal-conductivity of a new generated hybrid nanofluid of graphene oxide-titanium oxide/water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    8. Selimefendigil, Fatih & Öztop, Hakan F., 2019. "MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
    2. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Alnaqi, Abdulwahab A. & Sayyad Tavoos Hal, Sina & Aghaei, Alireza & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Predicting the effect of functionalized multi-walled carbon nanotubes on thermal performance factor of water under various Reynolds number using artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 493-500.
    4. Xiaohong, Dai & Huajiang, Chen & Bagherzadeh, Seyed Amin & Shayan, Masoud & Akbari, Mohammad, 2020. "Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Moradikazerouni, Alireza & Hajizadeh, Ahmad & Safaei, Mohammad Reza & Afrand, Masoud & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2019. "Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 138-145.
    6. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    7. Ahmadi, Mohammad Hossein & Baghban, Alireza & Sadeghzadeh, Milad & Hadipoor, Masoud & Ghazvini, Mahyar, 2020. "Evolving connectionist approaches to compute thermal conductivity of TiO2/water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Hemmat Esfe, Mohammad & Abbasian Arani, Ali Akbar & Esfandeh, Saeed & Afrand, Masoud, 2019. "Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy," Energy, Elsevier, vol. 170(C), pages 228-238.
    9. Shahsavar, Amin & Bagherzadeh, Seyed Amin & Mahmoudi, Boshra & Hajizadeh, Ahmad & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Robust Weighted Least Squares Support Vector Regression algorithm to estimate the nanofluid thermal properties of water/graphene Oxide–Silicon carbide mixture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1418-1428.
    10. Ahmadi, Mohammad Hossein & Ghazvini, Mahyar & Maddah, Heydar & Kahani, Mostafa & Pourfarhang, Samira & Pourfarhang, Amin & Heris, Saeed Zeinali, 2020. "Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    11. Alsarraf, Jalal & Bagherzadeh, Seyed Amin & Shahsavar, Amin & Rostamzadeh, Mahfouz & Trinh, Pham Van & Tran, Minh Duc, 2019. "Rheological properties of SWCNT/EG mixture by a new developed optimization approach of LS-Support Vector Regression according to empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 912-920.
    12. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Zarei, Amir & Karimipour, Arash & Meghdadi Isfahani, Amir Homayoon & Tian, Zhe, 2019. "Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    14. Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    15. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    16. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    17. Al-Rashed, Abdullah A.A.A., 2019. "Optimization of heat transfer and pressure drop of nano-antifreeze using statistical method of response surface methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 531-542.
    18. Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
    19. Rostamian, Hossein & Lotfollahi, Mohammad Nader, 2020. "Statistical modeling of aspirin solubility in organic solvents by Response Surface Methodology and Artificial Neural Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    20. Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:521:y:2019:i:c:p:724-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.