Optimization of MWCNTs (10%) – Al2O3 (90%)/5W50 nanofluid viscosity using experimental data and artificial neural network
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2018.07.040
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
- Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
- Reza Aghayari & Heydar Maddah & Mohammad Hossein Ahmadi & Wei-Mon Yan & Nahid Ghasemi, 2018. "Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions," Energies, MDPI, vol. 11(5), pages 1-16, May.
- Hemmat Esfe, Mohammad & Rostamian, Hossein & Esfandeh, Saeed & Afrand, Masoud, 2018. "Modeling and prediction of rheological behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 625-634.
- Hemmat Esfe, Mohammad & Kamyab, Mohammad Hassan & Afrand, Masoud & Amiri, Mahmoud Kiannejad, 2018. "Using artificial neural network for investigating of concurrent effects of multi-walled carbon nanotubes and alumina nanoparticles on the viscosity of 10W-40 engine oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 610-624.
- Ebrahimi-Moghadam, Amir & Mohseni-Gharyehsafa, Behnam & Farzaneh-Gord, Mahmood, 2018. "Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector," Renewable Energy, Elsevier, vol. 129(PA), pages 473-485.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahmadi, Mohammad Hossein & Ghazvini, Mahyar & Maddah, Heydar & Kahani, Mostafa & Pourfarhang, Samira & Pourfarhang, Amin & Heris, Saeed Zeinali, 2020. "Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
- Xiaohong, Dai & Huajiang, Chen & Bagherzadeh, Seyed Amin & Shayan, Masoud & Akbari, Mohammad, 2020. "Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
- Ramezanizadeh, Mahdi & Ahmadi, Mohammad Hossein & Nazari, Mohammad Alhuyi & Sadeghzadeh, Milad & Chen, Lingen, 2019. "A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Arani, Ali Akbar Abbasian & Alirezaie, Ali & Kamyab, Mohammad Hassan & Motallebi, Sayyid Majid, 2020. "Statistical analysis of enriched water heat transfer with various sizes of MgO nanoparticles using artificial neural networks modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Rostamian, Hossein & Lotfollahi, Mohammad Nader, 2020. "Statistical modeling of aspirin solubility in organic solvents by Response Surface Methodology and Artificial Neural Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
- Hemmat Esfe, Mohammad & Abbasian Arani, Ali Akbar & Esfandeh, Saeed & Afrand, Masoud, 2019. "Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy," Energy, Elsevier, vol. 170(C), pages 228-238.
- Moradikazerouni, Alireza & Hajizadeh, Ahmad & Safaei, Mohammad Reza & Afrand, Masoud & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2019. "Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 138-145.
- Tian, Zhe & Rostami, Sara & Taherialekouhi, Roozbeh & Karimipour, Arash & Moradikazerouni, Alireza & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2020. "Prediction of rheological behavior of a new hybrid nanofluid consists of copper oxide and multi wall carbon nanotubes suspended in a mixture of water and ethylene glycol using curve-fitting on experim," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Al-Rashed, Abdullah A.A.A. & Ranjbarzadeh, Ramin & Aghakhani, Saeed & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 724-736.
- Ruhani, Behrooz & Barnoon, Pouya & Toghraie, Davood, 2019. "Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 616-627.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmadi, Mohammad Hossein & Baghban, Alireza & Sadeghzadeh, Milad & Hadipoor, Masoud & Ghazvini, Mahyar, 2020. "Evolving connectionist approaches to compute thermal conductivity of TiO2/water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Hemmat Esfe, Mohammad & Abbasian Arani, Ali Akbar & Esfandeh, Saeed & Afrand, Masoud, 2019. "Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy," Energy, Elsevier, vol. 170(C), pages 228-238.
- Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
- Al-Rashed, Abdullah A.A.A. & Ranjbarzadeh, Ramin & Aghakhani, Saeed & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 724-736.
- Ramezanizadeh, Mahdi & Ahmadi, Mohammad Hossein & Nazari, Mohammad Alhuyi & Sadeghzadeh, Milad & Chen, Lingen, 2019. "A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Xiaohong, Dai & Huajiang, Chen & Bagherzadeh, Seyed Amin & Shayan, Masoud & Akbari, Mohammad, 2020. "Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
- Moradikazerouni, Alireza & Hajizadeh, Ahmad & Safaei, Mohammad Reza & Afrand, Masoud & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2019. "Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 138-145.
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
- Al-Rashed, Abdullah A.A.A., 2019. "Optimization of heat transfer and pressure drop of nano-antifreeze using statistical method of response surface methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 531-542.
- Chen, Zhixiong & Ashkezari, Abbas Zarenezhad & Tlili, Iskander, 2020. "Applying artificial neural network and curve fitting method to predict the viscosity of SAE50/MWCNTs-TiO2 hybrid nanolubricant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Alnaqi, Abdulwahab A. & Sayyad Tavoos Hal, Sina & Aghaei, Alireza & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Predicting the effect of functionalized multi-walled carbon nanotubes on thermal performance factor of water under various Reynolds number using artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 493-500.
- Rostamian, Hossein & Lotfollahi, Mohammad Nader, 2020. "Statistical modeling of aspirin solubility in organic solvents by Response Surface Methodology and Artificial Neural Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Tian, Zhe & Rostami, Sara & Taherialekouhi, Roozbeh & Karimipour, Arash & Moradikazerouni, Alireza & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2020. "Prediction of rheological behavior of a new hybrid nanofluid consists of copper oxide and multi wall carbon nanotubes suspended in a mixture of water and ethylene glycol using curve-fitting on experim," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Ahmadi, Mohammad Hossein & Ghazvini, Mahyar & Maddah, Heydar & Kahani, Mostafa & Pourfarhang, Samira & Pourfarhang, Amin & Heris, Saeed Zeinali, 2020. "Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
- Farzaneh-Gord, Mahmood & Mohseni-Gharyehsafa, Behnam & Arabkoohsar, Ahmad & Ahmadi, Mohammad Hossein & Sheremet, Mikhail A., 2020. "Precise prediction of biogas thermodynamic properties by using ANN algorithm," Renewable Energy, Elsevier, vol. 147(P1), pages 179-191.
- Arani, Ali Akbar Abbasian & Alirezaie, Ali & Kamyab, Mohammad Hassan & Motallebi, Sayyid Majid, 2020. "Statistical analysis of enriched water heat transfer with various sizes of MgO nanoparticles using artificial neural networks modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
- Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
More about this item
Keywords
Nano-lubricants; Artificial neural networks; MLP neural network; Rheological behavior;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:731-744. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.