IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v550y2020ics0378437119322769.html
   My bibliography  Save this article

Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity

Author

Listed:
  • Wei, Li
  • Arasteh, Hossein
  • abdollahi, Ali
  • Parsian, Amir
  • Taghipour, Abdolmajid
  • Mashayekhi, Ramin
  • Tlili, Iskander

Abstract

The objective of this study is to evaluate the variations of CuO/ ethanol nanofluid dynamic viscosity with temperature and shear rate experimentally. In this study, the nanoparticles average size, their mass fraction, temperature, and shear rate are varying from 10 to 50 nm, 0.005 to 5 wt. %, 25 to 70°C, and 2.6 to 64.6 s−1, respectively. The obtained results showed that as the nanoparticles mass fraction increases and the temperature decreases, the nanofluid dynamic viscosity enhances. Then to predict the nanofluid dynamic viscosity as a function of temperature and nanoparticles mass fraction, the locally weighted moving regression (LWMR) method is applied to the data alongside with applying a classic cubic interpolation for comparison. It was found that although both methods have acceptable performance in dealing with the trained data, the LWMR model results in a more precise prediction. In addition, the numerical viscosities obtained by both methods were evaluated at the trained dataset. Finally, it was concluded that the LWMR may be a suitable model for the investigation of nanofluid features.

Suggested Citation

  • Wei, Li & Arasteh, Hossein & abdollahi, Ali & Parsian, Amir & Taghipour, Abdolmajid & Mashayekhi, Ramin & Tlili, Iskander, 2020. "Locally weighted moving regression: A non-parametric method for modeling nanofluid features of dynamic viscosity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
  • Handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437119322769
    DOI: 10.1016/j.physa.2019.124124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119322769
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.124124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
    2. Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
    3. Goodarzi, Marjan & D’Orazio, Annunziata & Keshavarzi, Ahmad & Mousavi, Sayedali & Karimipour, Arash, 2018. "Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 210-233.
    4. M. Goodarzi & M. R. Safaei & A. Karimipour & K. Hooman & M. Dahari & S. N. Kazi & E. Sadeghinezhad, 2014. "Comparison of the Finite Volume and Lattice Boltzmann Methods for Solving Natural Convection Heat Transfer Problems inside Cavities and Enclosures," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-15, February.
    5. Ghasemi, Ali & Hassani, Mohsen & Goodarzi, Marjan & Afrand, Masoud & Manafi, Sahebali, 2019. "Appraising influence of COOH-MWCNTs on thermal conductivity of antifreeze using curve fitting and neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 36-45.
    6. Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
    7. Li, Zhixiong & Shahrajabian, Hamzeh & Bagherzadeh, Seyed Amin & Jadidi, Hamid & Karimipour, Arash & Tlili, Iskander, 2020. "Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    8. Jiang, Yu & Bahrami, Mehrdad & Bagherzadeh, Seyed Amin & Abdollahi, Ali & Sulgani, Mohsen Tahmasebi & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "Propose a new approach of fuzzy lookup table method to predict Al2O3/deionized water nanofluid thermal conductivity based on achieved empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    9. Karimipour, Arash & D’Orazio, Annunziata & Goodarzi, Marjan, 2018. "Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 729-745.
    10. Bagherzadeh, Seyed Amin & Sulgani, Mohsen Tahmasebi & Nikkhah, Vahid & Bahrami, Mehrdad & Karimipour, Arash & Jiang, Yu, 2019. "Minimize pressure drop and maximize heat transfer coefficient by the new proposed multi-objective optimization/statistical model composed of “ANN + Genetic Algorithm” based on empirical data of CuO/pa," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    11. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    12. Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 406-415.
    13. Ershadi, Hamed & Karimipour, Arash, 2018. "Present a multi-criteria modeling and optimization (energy, economic and environmental) approach of industrial combined cooling heating and power (CCHP) generation systems using the genetic algorithm,," Energy, Elsevier, vol. 149(C), pages 286-295.
    14. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Zhe & Arasteh, Hossein & Parsian, Amir & Karimipour, Arash & Safaei, Mohammad Reza & Nguyen, Truong Khang, 2019. "Estimate the shear rate & apparent viscosity of multi-phased non-Newtonian hybrid nanofluids via new developed Support Vector Machine method coupled with sensitivity analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Zarei, Amir & Karimipour, Arash & Meghdadi Isfahani, Amir Homayoon & Tian, Zhe, 2019. "Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Shahsavar, Amin & Bagherzadeh, Seyed Amin & Mahmoudi, Boshra & Hajizadeh, Ahmad & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Robust Weighted Least Squares Support Vector Regression algorithm to estimate the nanofluid thermal properties of water/graphene Oxide–Silicon carbide mixture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1418-1428.
    5. Xiaohong, Dai & Huajiang, Chen & Bagherzadeh, Seyed Amin & Shayan, Masoud & Akbari, Mohammad, 2020. "Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    7. Mahyari, Amirhossein Ansari & Karimipour, Arash & Afrand, Masoud, 2019. "Effects of dispersed added Graphene Oxide-Silicon Carbide nanoparticles to present a statistical formulation for the mixture thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 98-112.
    8. Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 406-415.
    9. Li, Zhixiong & Shahrajabian, Hamzeh & Bagherzadeh, Seyed Amin & Jadidi, Hamid & Karimipour, Arash & Tlili, Iskander, 2020. "Effects of nano-clay content, foaming temperature and foaming time on density and cell size of PVC matrix foam by presented Least Absolute Shrinkage and Selection Operator statistical regression via s," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    10. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    11. Karimipour, Arash & Bagherzadeh, Seyed Amin & Taghipour, Abdolmajid & Abdollahi, Ali & Safaei, Mohammad Reza, 2019. "A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 89-97.
    12. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    13. Alnaqi, Abdulwahab A. & Sayyad Tavoos Hal, Sina & Aghaei, Alireza & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Predicting the effect of functionalized multi-walled carbon nanotubes on thermal performance factor of water under various Reynolds number using artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 493-500.
    14. Ahmadi, Mohammad Hossein & Baghban, Alireza & Sadeghzadeh, Milad & Hadipoor, Masoud & Ghazvini, Mahyar, 2020. "Evolving connectionist approaches to compute thermal conductivity of TiO2/water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. Al-Rashed, Abdullah A.A.A. & Ranjbarzadeh, Ramin & Aghakhani, Saeed & Soltanimehr, Mehdi & Afrand, Masoud & Nguyen, Truong Khang, 2019. "Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 724-736.
    16. Safaei, Mohammad Reza & Hajizadeh, Ahmad & Afrand, Masoud & Qi, Cong & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2019. "Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 209-216.
    17. Alsarraf, Jalal & Bagherzadeh, Seyed Amin & Shahsavar, Amin & Rostamzadeh, Mahfouz & Trinh, Pham Van & Tran, Minh Duc, 2019. "Rheological properties of SWCNT/EG mixture by a new developed optimization approach of LS-Support Vector Regression according to empirical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 912-920.
    18. Moradikazerouni, Alireza & Hajizadeh, Ahmad & Safaei, Mohammad Reza & Afrand, Masoud & Yarmand, Hooman & Zulkifli, Nurin Wahidah Binti Mohd, 2019. "Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 138-145.
    19. Alipour, Pedram & Toghraie, Davood & Karimipour, Arash & Hajian, Mehdi, 2019. "Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 13-30.
    20. Wu, Huawei & Bagherzadeh, Seyed Amin & D’Orazio, Annunziata & Habibollahi, Navid & Karimipour, Arash & Goodarzi, Marjan & Bach, Quang-Vu, 2019. "Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and ther," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:550:y:2020:i:c:s0378437119322769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.