IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v514y2019icp63-70.html
   My bibliography  Save this article

Generalized transport equation with nonlocality of space–time. Zubarev’s NSO method

Author

Listed:
  • Kostrobij, P.P.
  • Markovych, B.M.
  • Viznovych, O.V.
  • Tokarchuk, M.V.

Abstract

We presented a general approach for obtaining the generalized transport equations with fractional derivatives by using the Liouville equation with fractional derivatives for a system of classical particles and Zubarev’s nonequilibrium statistical operator (NSO) method within Renyi statistics. New non-Markovian diffusion equations for particles in spatially heterogeneous environment with fractal structure and a generalized Cattaneo-type diffusion equation with taking into account nonlocality of space–time are obtained. Different models of frequency-dependent memory functions, which lead to known diffusion equations with nonlocality of space–time and their generalizations are studied.

Suggested Citation

  • Kostrobij, P.P. & Markovych, B.M. & Viznovych, O.V. & Tokarchuk, M.V., 2019. "Generalized transport equation with nonlocality of space–time. Zubarev’s NSO method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 63-70.
  • Handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:63-70
    DOI: 10.1016/j.physa.2018.09.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711831183X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Haitao & Jiang, Xiaoyun, 2011. "Solutions of the space-time fractional Cattaneo diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1876-1883.
    2. Markiv, B.B. & Tokarchuk, R.M. & Kostrobij, P.P. & Tokarchuk, M.V., 2011. "Nonequilibrium statistical operator method in Renyi statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 785-791.
    3. Sun, HongGuang & Chen, Wen & Li, Changpin & Chen, YangQuan, 2010. "Fractional differential models for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2719-2724.
    4. Nigmatullin, R.R., 2006. "‘Fractional’ kinetic equations and ‘universal’ decoupling of a memory function in mesoscale region," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 282-298.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tawfik, Ashraf M. & Fichtner, Horst & Elhanbaly, A. & Schlickeiser, Reinhard, 2018. "Analytical solution of the space–time fractional hyperdiffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 178-187.
    2. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    3. Tawfik, Ashraf M. & Abdelhamid, Hamdi M., 2021. "Generalized fractional diffusion equation with arbitrary time varying diffusivity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    5. Wei, Song & Chen, Wen & Hon, Y.C., 2016. "Characterizing time dependent anomalous diffusion process: A survey on fractional derivative and nonlinear models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1244-1251.
    6. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Nagy, A.M., 2017. "Numerical solution of time fractional nonlinear Klein–Gordon equation using Sinc–Chebyshev collocation method," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 139-148.
    8. Liu, Lin & Chen, Siyu & Bao, Chunxu & Feng, Libo & Zheng, Liancun & Zhu, Jing & Zhang, Jiangshan, 2023. "Analysis of the absorbing boundary conditions for anomalous diffusion in comb model with Cattaneo model in an unbounded region," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    10. Meng, Zhijun & Yi, Mingxu & Huang, Jun & Song, Lei, 2018. "Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 454-464.
    11. Gómez-Aguilar, J.F., 2018. "Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 52-75.
    12. Ahmed, Hoda F. & Hashem, W.A., 2023. "A fully spectral tau method for a class of linear and nonlinear variable-order time-fractional partial differential equations in multi-dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 388-408.
    13. Wang, Zhaoyang & Zheng, Liancun, 2020. "Anomalous diffusion in inclined comb-branch structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    14. Kumar, Kamlesh & Pandey, Rajesh K. & Yadav, Swati, 2019. "Finite difference scheme for a fractional telegraph equation with generalized fractional derivative terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Hashemi, M.S. & Inc, Mustafa & Yusuf, Abdullahi, 2020. "On three-dimensional variable order time fractional chaotic system with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    16. Hayman Thabet & Subhash Kendre & Dimplekumar Chalishajar, 2017. "New Analytical Technique for Solving a System of Nonlinear Fractional Partial Differential Equations," Mathematics, MDPI, vol. 5(4), pages 1-15, September.
    17. Liu, Zhengguang & Cheng, Aijie & Li, Xiaoli, 2017. "A second order Crank–Nicolson scheme for fractional Cattaneo equation based on new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 361-374.
    18. Ávalos-Ruiz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2018. "FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 177-189.
    19. Mishra, T.N. & Rai, K.N., 2016. "Numerical solution of FSPL heat conduction equation for analysis of thermal propagation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1006-1017.
    20. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:63-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.