IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v410y2021ics0096300321005385.html
   My bibliography  Save this article

Generalized fractional diffusion equation with arbitrary time varying diffusivity

Author

Listed:
  • Tawfik, Ashraf M.
  • Abdelhamid, Hamdi M.

Abstract

Anomalous diffusion processes in many complex systems are frequently described by the diffusion equation with a time-dependent diffusion coefficient. This paper introduces an exact solution to the broad classes of the fractional diffusion equation with the arbitrary time-dependent diffusion coefficient by using the Laplace-Fourier technique. The Riesz fractional derivative serves to replace the Laplacian operator, while the new regularized Caputo-type fractional derivative is employed instead of the time derivative. We examine our results by introducing and analyzing the most three common cases that represent diffusivity that varying with time. Our calculation shows exact matching with the probability distribution function and mean square displacement illustrated in the literature.

Suggested Citation

  • Tawfik, Ashraf M. & Abdelhamid, Hamdi M., 2021. "Generalized fractional diffusion equation with arbitrary time varying diffusivity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
  • Handle: RePEc:eee:apmaco:v:410:y:2021:i:c:s0096300321005385
    DOI: 10.1016/j.amc.2021.126449
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321005385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Tomovski, Živorad & Sandev, Trifce & Metzler, Ralf & Dubbeldam, Johan, 2012. "Generalized space–time fractional diffusion equation with composite fractional time derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2527-2542.
    3. Dassios, Ioannis K. & Baleanu, Dumitru I., 2018. "Caputo and related fractional derivatives in singular systems," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 591-606.
    4. Qi, Haitao & Jiang, Xiaoyun, 2011. "Solutions of the space-time fractional Cattaneo diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1876-1883.
    5. Jaume Masoliver & Katja Lindenberg, 2017. "Continuous time persistent random walk: a review and some generalizations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. dos Santos, M.A.F. & Menon, L. & Cius, D., 2022. "Superstatistical approach of the anomalous exponent for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tawfik, Ashraf M. & Fichtner, Horst & Elhanbaly, A. & Schlickeiser, Reinhard, 2018. "Analytical solution of the space–time fractional hyperdiffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 178-187.
    2. Dassios, Ioannis & Tzounas, Georgios & Liu, Muyang & Milano, Federico, 2022. "Singular over-determined systems of linear differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 396-412.
    3. Kononovicius, Aleksejus & Kazakevičius, Rytis & Kaulakys, Bronislovas, 2022. "Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processes," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Maike A. F. dos Santos, 2019. "Mittag–Leffler Memory Kernel in Lévy Flights," Mathematics, MDPI, vol. 7(9), pages 1-13, August.
    5. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    6. Kolesnik, Alexander D., 2018. "Slow diffusion by Markov random flights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 186-197.
    7. Liao, Xiaozhong & Wang, Yong & Yu, Donghui & Lin, Da & Ran, Manjie & Ruan, Pengbo, 2023. "Modeling and analysis of Buck-Boost converter with non-singular fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Fabio Tramontana & Laura Gardini, 2021. "Revisiting Samuelson’s models, linear and nonlinear, stability conditions and oscillating dynamics," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-15, December.
    9. Dassios, Ioannis & Tzounas, Georgios & Milano, Federico, 2019. "The Möbius transform effect in singular systems of differential equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 338-353.
    10. Su, Guangwang & Lu, Liang & Tang, Bo & Liu, Zhenhai, 2020. "Quasilinearization technique for solving nonlinear Riemann-Liouville fractional-order problems," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    11. Sun, HongGuang & Hao, Xiaoxiao & Zhang, Yong & Baleanu, Dumitru, 2017. "Relaxation and diffusion models with non-singular kernels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 590-596.
    12. dos Santos, M.A.F. & Menon, L. & Cius, D., 2022. "Superstatistical approach of the anomalous exponent for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Liu, Lin & Chen, Siyu & Bao, Chunxu & Feng, Libo & Zheng, Liancun & Zhu, Jing & Zhang, Jiangshan, 2023. "Analysis of the absorbing boundary conditions for anomalous diffusion in comb model with Cattaneo model in an unbounded region," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Eliazar, Iddo, 2023. "Spectral design of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    15. dos Santos, M.A.F. & Colombo, E.H. & Anteneodo, C., 2021. "Random diffusivity scenarios behind anomalous non-Gaussian diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Fernando Ortega & Maria Filomena Barros, 2020. "The Samuelson macroeconomic model as a singular linear matrix difference equation," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-10, December.
    17. Alijani, Zahra & Baleanu, Dumitru & Shiri, Babak & Wu, Guo-Cheng, 2020. "Spline collocation methods for systems of fuzzy fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    18. Aleksejus Kononovicius & Rytis Kazakeviv{c}ius & Bronislovas Kaulakys, 2022. "Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processes," Papers 2205.07563, arXiv.org, revised Jul 2022.
    19. Wang, Zhaoyang & Zheng, Liancun, 2020. "Anomalous diffusion in inclined comb-branch structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    20. Emilia Bazhlekova & Ivan Bazhlekov, 2019. "Subordination Approach to Space-Time Fractional Diffusion," Mathematics, MDPI, vol. 7(5), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:410:y:2021:i:c:s0096300321005385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.