IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v214y2023icp388-408.html
   My bibliography  Save this article

A fully spectral tau method for a class of linear and nonlinear variable-order time-fractional partial differential equations in multi-dimensions

Author

Listed:
  • Ahmed, Hoda F.
  • Hashem, W.A.

Abstract

We present a linear and nonlinear comprehensive class of variable-order (VO) time-fractional partial differential equations in multi-dimensions with Caputo VO fractional operator. This class comprises, as special cases, several linear and nonlinear equations of important applications in diverse fields, such as, the VO time-fractional telegraph equation, the VO time-fractional diffusion-wave equation and the VO time-fractional Klein–Gordon equation. A novel and accurate spectral tau method based on the shifted Gegenbauer polynomials (SGPs) is presented for the numerical treatment of the aforementioned class of equations. Actually, applying the tau method for solving this class of equations is very difficult, especially in the presence of the nonlinear term of these equations and the nature of the VO derivatives. To overcome this difficulty, new operational matrices for the VO fractional derivative and the approximation of the multiplication of the space–time Kronecker product vectors in multi-dimension are derived. These new matrices have the ability to remove the aforementioned difficulties that facing for applying the tau method. Several linear and nonlinear numerical examples are examined and compared in multi-dimensions with other methods to verify the validity, applicability and accuracy of the proposed methodology.

Suggested Citation

  • Ahmed, Hoda F. & Hashem, W.A., 2023. "A fully spectral tau method for a class of linear and nonlinear variable-order time-fractional partial differential equations in multi-dimensions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 388-408.
  • Handle: RePEc:eee:matcom:v:214:y:2023:i:c:p:388-408
    DOI: 10.1016/j.matcom.2023.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423003178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. F. Gómez-Aguilar & Abdon Atangana, 2019. "Time-fractional variable-order telegraph equation involving operators with Mittag-Leffler kernel," Journal of Electromagnetic Waves and Applications, Taylor & Francis Journals, vol. 33(2), pages 165-177, January.
    2. H. T. Taghian & W. M. Abd-Elhameed & G. M. Moatimid & Y. H. Youssri, 2021. "Shifted Gegenbauer–Galerkin algorithm for hyperbolic telegraph type equation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(09), pages 1-20, September.
    3. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Yang, Yin, 2019. "A computational method for solving variable-order fractional nonlinear diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 235-248.
    4. Sun, HongGuang & Chen, Wen & Li, Changpin & Chen, YangQuan, 2010. "Fractional differential models for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2719-2724.
    5. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    6. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    7. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heydari, M.H., 2020. "Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana–Baleanu–Caputo variable-order fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Heydari, M.H. & Atangana, A., 2019. "A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 339-348.
    3. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    4. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    5. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Yang, Yin, 2019. "A computational method for solving variable-order fractional nonlinear diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 235-248.
    7. Hosseininia, M. & Heydari, M.H., 2019. "Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 400-407.
    8. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    9. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Nagy, A.M., 2017. "Numerical solution of time fractional nonlinear Klein–Gordon equation using Sinc–Chebyshev collocation method," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 139-148.
    11. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    12. Meng, Zhijun & Yi, Mingxu & Huang, Jun & Song, Lei, 2018. "Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 454-464.
    13. Peng, Xiao & Wang, Yijing & Zuo, Zhiqiang, 2022. "Co-design of state-dependent switching law and control scheme for variable-order fractional nonlinear switched systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    14. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    15. Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    16. Gómez-Aguilar, J.F., 2018. "Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 52-75.
    17. Abdelkawy, M.A. & Lopes, António M. & Babatin, Mohammed M., 2020. "Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    18. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Pho, Kim-Hung & Heydari, M.H. & Tuan, Bui Anh & Mahmoudi, Mohammad Reza, 2020. "Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana-Baleanu-Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    20. Sun, Lin & Chen, Yiming, 2021. "Numerical analysis of variable fractional viscoelastic column based on two-dimensional Legendre wavelets algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:214:y:2023:i:c:p:388-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.