IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v273y2016icp1006-1017.html
   My bibliography  Save this article

Numerical solution of FSPL heat conduction equation for analysis of thermal propagation

Author

Listed:
  • Mishra, T.N.
  • Rai, K.N.

Abstract

The fractional single-phase-lagging (FSPL) heat conduction model is obtained by applying fractional Taylor series formula to the single-phase-lagging (SPL) heat conduction model. Based on the FSPL heat conduction equation, thermal wave propagation within a finite thin film subjected to time-varying and spatially-decaying laser heating at left boundary (x=0) is investigated. The effect of different parameters on temperature solution has been observed. Results were obtained by compact difference scheme. The stability of the numerical scheme has been discussed and observed that the solution is unconditionally stable. The whole analysis is presented in dimensionless form. A numerical example of particular interest has been studied and discussed in details.

Suggested Citation

  • Mishra, T.N. & Rai, K.N., 2016. "Numerical solution of FSPL heat conduction equation for analysis of thermal propagation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1006-1017.
  • Handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:1006-1017
    DOI: 10.1016/j.amc.2015.10.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315014332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.10.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Haitao & Jiang, Xiaoyun, 2011. "Solutions of the space-time fractional Cattaneo diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1876-1883.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tawfik, Ashraf M. & Abdelhamid, Hamdi M., 2021. "Generalized fractional diffusion equation with arbitrary time varying diffusivity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    3. Wang, Zhaoyang & Zheng, Liancun, 2020. "Anomalous diffusion in inclined comb-branch structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Liu, Lin & Chen, Siyu & Bao, Chunxu & Feng, Libo & Zheng, Liancun & Zhu, Jing & Zhang, Jiangshan, 2023. "Analysis of the absorbing boundary conditions for anomalous diffusion in comb model with Cattaneo model in an unbounded region," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Liu, Zhengguang & Cheng, Aijie & Li, Xiaoli, 2017. "A second order Crank–Nicolson scheme for fractional Cattaneo equation based on new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 361-374.
    6. Tawfik, Ashraf M. & Fichtner, Horst & Elhanbaly, A. & Schlickeiser, Reinhard, 2018. "Analytical solution of the space–time fractional hyperdiffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 178-187.
    7. Kostrobij, P.P. & Markovych, B.M. & Viznovych, O.V. & Tokarchuk, M.V., 2019. "Generalized transport equation with nonlocality of space–time. Zubarev’s NSO method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 63-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:273:y:2016:i:c:p:1006-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.