IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v473y2017icp156-165.html
   My bibliography  Save this article

Vulnerability analysis and critical areas identification of the power systems under terrorist attacks

Author

Listed:
  • Wang, Shuliang
  • Zhang, Jianhua
  • Zhao, Mingwei
  • Min, Xu

Abstract

This paper takes central China power grid (CCPG) as an example, and analyzes the vulnerability of the power systems under terrorist attacks. To simulate the intelligence of terrorist attacks, a method of critical attack area identification according to community structures is introduced. Meanwhile, three types of vulnerability models and the corresponding vulnerability metrics are given for comparative analysis. On this basis, influence of terrorist attacks on different critical areas is studied. Identifying the vulnerability of different critical areas will be conducted. At the same time, vulnerabilities of critical areas under different tolerance parameters and different vulnerability models are acquired and compared. Results show that only a few number of vertex disruptions may cause some critical areas collapse completely, they can generate great performance losses the whole systems. Further more, the variation of vulnerability values under different scenarios is very large. Critical areas which can cause greater damage under terrorist attacks should be given priority of protection to reduce vulnerability. The proposed method can be applied to analyze the vulnerability of other infrastructure systems, they can help decision makers search mitigation action and optimum protection strategy.

Suggested Citation

  • Wang, Shuliang & Zhang, Jianhua & Zhao, Mingwei & Min, Xu, 2017. "Vulnerability analysis and critical areas identification of the power systems under terrorist attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 156-165.
  • Handle: RePEc:eee:phsmap:v:473:y:2017:i:c:p:156-165
    DOI: 10.1016/j.physa.2017.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117300031
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nan, Cen & Eusgeld, Irene, 2011. "Adopting HLA standard for interdependency study," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 149-159.
    2. Wang, Jianwei & Li, Yun & Zheng, Qiaofang, 2015. "Cascading load model in interdependent networks with coupled strength," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 242-253.
    3. Hong, Liu & Yan, Yongze & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2017. "Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 58-72.
    4. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    5. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    6. Ouyang, Min & Zhao, Lijing & Pan, Zhezhe & Hong, Liu, 2014. "Comparisons of complex network based models and direct current power flow model to analyze power grid vulnerability under intentional attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 45-53.
    7. Ouyang, Min & Zhao, Lijing & Hong, Liu & Pan, Zhezhe, 2014. "Comparisons of complex network based models and real train flow model to analyze Chinese railway vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 38-46.
    8. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    2. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    3. Wang, Shuliang & Zhang, Jianhua & Yue, Xin, 2018. "Multiple robustness assessment method for understanding structural and functional characteristics of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 261-270.
    4. Li, Kaiwen & Liu, Kai & Wang, Ming, 2021. "Robustness of the Chinese power grid to cascading failures under attack and defense strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    5. Mingyu Chen & Huapu Lu, 2020. "Analysis of Transportation Network Vulnerability and Resilience within an Urban Agglomeration: Case Study of the Greater Bay Area, China," Sustainability, MDPI, vol. 12(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shuliang & Stanley, H. Eugene & Gao, Yachun, 2018. "A methodological framework for vulnerability analysis of interdependent infrastructure systems under deliberate attacks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 21-29.
    2. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    3. Zhao, Chen & Li, Nan & Fang, Dongping, 2018. "Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm and a multilayer weighted directed network model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 100-112.
    4. Galvan, Giulio & Agarwal, Jitendra, 2020. "Assessing the vulnerability of infrastructure networks based on distribution measures," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    5. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    6. Wang, Shuliang & Zhang, Jianhua & Yue, Xin, 2018. "Multiple robustness assessment method for understanding structural and functional characteristics of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 261-270.
    7. Hong, Liu & Yan, Yongze & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2017. "Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 58-72.
    8. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    9. Ying Wang & Xiangmei Li & Jiangfeng Li & Zhengdong Huang & Renbin Xiao, 2018. "Impact of Rapid Urbanization on Vulnerability of Land System from Complex Networks View: A Methodological Approach," Complexity, Hindawi, vol. 2018, pages 1-18, May.
    10. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    11. Liang, Shidong & Zhang, Hu & Fang, Zhiming & He, Shengxue & Zhao, Jing & Leng, Rongmeng & Ma, Minghui, 2022. "Optimal control to improve reliability of demand responsive transport priority at signalized intersections considering the stochastic process," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    12. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    13. Min Ouyang & Hui Tian & Zhenghua Wang & Liu Hong & Zijun Mao, 2019. "Critical Infrastructure Vulnerability to Spatially Localized Failures with Applications to Chinese Railway System," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 180-194, January.
    14. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    15. Yan, Yongze & Hong, Liu & He, Xiaozheng & Ouyang, Min & Peeta, Srinivas & Chen, Xueguang, 2017. "Pre-disaster investment decisions for strengthening the Chinese railway system under earthquakes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 39-59.
    16. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    18. Liang, Shidong & He, Shengxue & Zhang, Hu & Ma, Minghui, 2021. "Optimal holding time calculation algorithm to improve the reliability of high frequency bus route considering the bus capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    20. Ouyang, Min & Xu, Min & Zhang, Chi & Huang, Shitong, 2017. "Mitigating electric power system vulnerability to worst-case spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 144-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:473:y:2017:i:c:p:156-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.