IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp746-753.html
   My bibliography  Save this article

Malicious viruses spreading on complex networks with heterogeneous recovery rate

Author

Listed:
  • Long, Linbo
  • Zhong, Kan
  • Wang, Wei

Abstract

We propose a malicious viruses spreading model on complex networks that considers the effects of the resource contribution of healthy neighbors. Due to the difference in resource amount received from the healthy neighbors, the recovery rate of infected nodes is heterogeneous. Through rigorous theoretical analysis and extensive numerical simulations, we find that the virus spreading can be optimally suppressed if each healthy node contributes equal resource to the infected nodes. There is a maximum outbreak threshold and minimum fraction of infected nodes with the optimal strategy of resource contribution. In addition, we find that in a homogeneous network, the strategy of resource contribution can alter the phase transition. If each healthy node contributes relatively evenly, the phase transition is continuous. Whereas, if the recovery resources of infected nodes is mainly relies on nodes with large or small degrees, there is discontinuous phase transition. In heterogeneous network, there is always continuous phase transition.

Suggested Citation

  • Long, Linbo & Zhong, Kan & Wang, Wei, 2018. "Malicious viruses spreading on complex networks with heterogeneous recovery rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 746-753.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:746-753
    DOI: 10.1016/j.physa.2018.05.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307015
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingwen Zheng & Lixiang Li & Haipeng Peng & Jinghua Xiao & Yixian Yang & Hui Zhao & Jingfeng Ren, 2016. "Finite-time synchronization of complex dynamical networks with multi-links via intermittent controls," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-12, February.
    2. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    3. Yang, Han-Xin & Tang, Ming & Wang, Zhen, 2018. "Suppressing epidemic spreading by risk-averse migration in dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 347-352.
    4. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.
    5. Lin Wang & Joseph T. Wu, 2018. "Characterizing the dynamics underlying global spread of epidemics," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    6. Mingwen Zheng & Lixiang Li & Haipeng Peng & Jinghua Xiao & Yixian Yang & Hui Zhao & Jingfeng Ren, 2016. "Finite-time synchronization of complex dynamical networks with multi-links via intermittent controls," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiao-Long & Wang, Rui-Jie & Yang, Chun & Cai, Shi-Min, 2019. "Hybrid resource allocation and its impact on the dynamics of disease spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 156-165.
    2. Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    3. Yuan, Manman & Wang, Weiping & Luo, Xiong & Liu, Linlin & Zhao, Wenbing, 2018. "Finite-time anti-synchronization of memristive stochastic BAM neural networks with probabilistic time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 244-260.
    4. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    5. Zhang, Lingzhong & Yang, Yongqing & Xu, Xianyun, 2018. "Synchronization analysis for fractional order memristive Cohen–Grossberg neural networks with state feedback and impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 644-660.
    6. Zhang, Chuan & Wang, Xingyuan & Luo, Chao & Li, Junqiu & Wang, Chunpeng, 2018. "Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 251-264.
    7. Jin-E Zhang & Huan Liu, 2019. "Global Robust Exponential Synchronization of Multiple Uncertain Neural Networks Subject to Event-Triggered Strategy," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    8. Wang, Cong & Zhang, Hongli & Fan, Wenhui & Ma, Ping, 2018. "Adaptive control method for chaotic power systems based on finite-time stability theory and passivity-based control approach," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 159-167.
    9. Wang, Xin & Su, Housheng, 2019. "Consensus of hybrid multi-agent systems by event-triggered/self-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 490-501.
    10. Luo, Mengzhuo & Cheng, Jun & Liu, Xinzhi & Zhong, Shouming, 2019. "An extended synchronization analysis for memristor-based coupled neural networks via aperiodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 344, pages 163-182.
    11. Zhu, Xuzhen & Wang, Ruijie & Wang, Zexun & Chen, Xiaolong & Wang, Wei & Cai, Shimin, 2019. "Double-edged sword effect of edge overlap on asymmetrically interacting spreading dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 617-624.
    12. Feng, Zongying & Shao, Hanyong & Shao, Lin, 2020. "Further results on event-triggered H∞ networked control for neural networks with stochastic cyber-attacks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    13. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    14. Yang, Yixin & Pan, Qiuhui & He, Mingfeng, 2023. "The influence of environment-based autonomous mobility on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    15. Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
    16. Chen, Ning & Zhu, Xuzhen & Chen, Yanyan, 2019. "Information spreading on complex networks with general group distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 671-676.
    17. Zou, Yang & Xiong, Zhongyang & Zhang, Pu & Wang, Wei, 2018. "Social contagions on multiplex networks with different reliability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 728-735.
    18. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    19. Hong, Yaxian & Bin, Honghua & Huang, Zhenkun, 2019. "Synchronization of state-switching hopfield-type neural networks: A quantized level set approach," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 16-24.
    20. Jun Cai & Bo Xu & Karen Kie Yan Chan & Xueying Zhang & Bing Zhang & Ziyue Chen & Bing Xu, 2019. "Roles of Different Transport Modes in the Spatial Spread of the 2009 Influenza A(H1N1) Pandemic in Mainland China," IJERPH, MDPI, vol. 16(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:746-753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.