IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v129y2019icp16-24.html
   My bibliography  Save this article

Synchronization of state-switching hopfield-type neural networks: A quantized level set approach

Author

Listed:
  • Hong, Yaxian
  • Bin, Honghua
  • Huang, Zhenkun

Abstract

This paper presents the quantized synchronization of state-switching hopfield-type neural networks (SSHNNs) with delays. Due to a quantized controller with saturation, some unified synchronization criterion for SSHNNs with discrete delays and distributed delays are obtained. The quantized adaptive saturation controller (QASC) relies only on the quantized level sets, and hence greatly reduces the control cost and improves the practicability of the SSHNNs synchronization principle. The obtained results are new and improve the existing ones. Finally, numerical examples are given to demonstrate the correctness of our theoretical results.

Suggested Citation

  • Hong, Yaxian & Bin, Honghua & Huang, Zhenkun, 2019. "Synchronization of state-switching hopfield-type neural networks: A quantized level set approach," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 16-24.
  • Handle: RePEc:eee:chsofr:v:129:y:2019:i:c:p:16-24
    DOI: 10.1016/j.chaos.2019.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Yuming & Yang, Xinsong & Song, Qiang & Cao, Jinde, 2018. "Synchronization of memristive neural networks with mixed delays via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 874-887.
    2. Zhang, Ruimei & Zeng, Deqiang & Zhong, Shouming & Yu, Yongbin, 2017. "Event-triggered sampling control for stability and stabilization of memristive neural networks with communication delays," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 57-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Lisha & Wang, Zhen & Zhang, Mingguang & Fan, Yingjie, 2023. "Sampled-data control for mean-square exponential stabilization of memristive neural networks under deception attacks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Ruofeng Rao & Jialin Huang & Xinsong Yang, 2021. "Global Stabilization of a Single-Species Ecosystem with Markovian Jumping under Neumann Boundary Value via Laplacian Semigroup," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    3. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    4. Liu, Yunfeng & Song, Zhiqiang & Tan, Manchun, 2019. "Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 1-17.
    5. Yao, Xueqi & Zhong, Shouming & Hu, Taotao & Cheng, Hong & Zhang, Dian, 2019. "Uniformly stable and attractive of fractional-order memristor-based neural networks with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 392-403.
    6. Liu, Yang & Zhang, Zhenzhen & Chen, Hao & Zhong, Shouming, 2023. "A memory behavior related hybrid event-triggered mechanism for an improved robust control on neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 1-20.
    7. Zeng, Deqiang & Zhang, Ruimei & Liu, Yajuan & Zhong, Shouming, 2017. "Sampled-data synchronization of chaotic Lur’e systems via input-delay-dependent-free-matrix zero equality approach," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 34-46.
    8. Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    9. Zeng, Deqiang & Pu, Zhilin & Zhang, Ruimei & Zhong, Shouming & Liu, Yajuan & Wu, Guo-Cheng, 2019. "Stochastic reliable synchronization for coupled Markovian reaction–diffusion neural networks with actuator failures and generalized switching policies," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 88-106.
    10. Li, Zhao-Yan & Shang, Shengnan & Lam, James, 2019. "On stability of neutral-type linear stochastic time-delay systems with three different delays," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 147-166.
    11. Chen, Yuan & Wu, Jianwei & Bao, Haibo, 2022. "Finite-time stabilization for delayed quaternion-valued coupled neural networks with saturated impulse," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    12. Gao, Zifan & Zhang, Dawei & Zhu, Shuqian, 2023. "Hybrid event-triggered synchronization control of delayed chaotic neural networks against communication delay and random data loss," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    13. Shu, Jinlong & Wu, Baowei & Xiong, Lianglin, 2022. "Stochastic stability criteria and event-triggered control of delayed Markovian jump quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    14. Zhu, Sha & Bao, Haibo, 2022. "Event-triggered synchronization of coupled memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    15. Ge, Chao & Shi, Yanpen & Park, Ju H. & Hua, Changchun, 2019. "Robust H∞ stabilization for T-S fuzzy systems with time-varying delays and memory sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 500-512.
    16. Xie, Wenqian & Zhu, Hong & Zhong, Shouming & Zhang, Dian & Shi, Kaibo & Cheng, Jun, 2018. "Extended dissipative estimator design for uncertain switched delayed neural networks via a novel triple integral inequality," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 82-102.
    17. Chen, Xiao-Long & Wang, Rui-Jie & Yang, Chun & Cai, Shi-Min, 2019. "Hybrid resource allocation and its impact on the dynamics of disease spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 156-165.
    18. Wang, Shengbo & Cao, Yanyi & Huang, Tingwen & Wen, Shiping, 2019. "Passivity and passification of memristive neural networks with leakage term and time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 294-310.
    19. Tao Wu & Jinde Cao & Lianglin Xiong & Haiyang Zhang, 2019. "New Stabilization Results for Semi-Markov Chaotic Systems with Fuzzy Sampled-Data Control," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    20. Wang, Jun & Shi, Kaibo & Huang, Qinzhen & Zhong, Shouming & Zhang, Dian, 2018. "Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 211-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:129:y:2019:i:c:p:16-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.